flink学习2 流式概念

流式概念

Flink 的 Table API 和 SQL 是流批统一的 API。 这意味着 Table API & SQL 在无论有限的批式输入还是无限的流式输入下,都具有相同的语义。 因为传统的关系代数以及 SQL 最开始都是为了批式处理而设计的, 关系型查询在流式场景下不如在批式场景下容易懂。

1、状态管理

一个表程序(Table program)可以配置一个 state backend 和多个不同的 checkpoint 选项 以处理对不同状态大小和容错需求。这可以对正在运行的 Table API & SQL 管道(pipeline)生成 savepoint,并在这之后用其恢复应用程序的状态。

状态使用

  • 由于 Table API & SQL 程序是声明式的,管道内的状态会在哪以及如何被使用并不明确。 Planner 会确认是否需要状态来得到正确的计算结果, 管道会被现有优化规则集优化成尽可能少地使用状态。
  • 形如 SELECT ... FROM ... WHERE 这种只包含字段映射或过滤器的查询的查询语句通常是无状态的管道。
  • 然而诸如 join、 聚合或去重操作需要在 Flink 抽象的容错存储内保存中间结果。flink进行 join 操作
    提供了优化窗口和时段Join聚合 以利用 watermarks概念来让保持较小的状态规模。

2、动态表

  • Flink 如何在++无界数据集++上实现与++数据库引擎在有界数据上的处理++具有相同的语义

1) DataStream 上的关系查询

关系代数 / SQL 流处理
关系(或表)是有界(多)元组集合。 流是一个无限元组序列。
对批数据(例如关系数据库中的表)执行的查询可以访问完整的输入数据。 流式查询在启动时不能访问所有数据,必须“等待”数据流入。
批处理查询在产生固定大小的结果后终止。 流查询不断地根据接收到的记录更新其结果,并且始终不会结束。

如何使用++关系查询++和++sql++处理流计算呢?-- 2)3)4)

2)动态表 & 连续查询(Continuous Query)

动态表 是 Flink 的支持流数据的 Table API 和 SQL 的核心概念。与表示批处理数据的静态表不同,动态表是随时间变化的。可以像查询静态批处理表一样查询它们。

3)在流上定义表

  • 连续查询:在动态表上计算一个连续查询,并生成一个新的动态表。连续查询从不终止,并根据其输入表上的更新更新其结果表。在任何时候,连续查询的结果在语义上与以批处理模式在输入表快照上执行的相同查询的结果相同。

4)表到流的转换

动态表可以像普通数据库表一样通过 INSERT、UPDATE 和 DELETE 来不断修改。它可能是一个只有一行、不断更新的表,也可能是一个 insert-only 的表,没有 UPDATE 和 DELETE 修改,或者介于两者之间的其他表。

3、时间属性

背景:
确定性概念“如果一个操作在重复相同的输入值时能保证计算出相同的结果,那么该操作就是确定性的”。流计算任务中的动态函数,会造成不确定性。
时间属性:
Flink 可以基于几种不同的 时间 概念来处理数据。

  • 处理时间 指的是执行具体操作时的机器时间(大家熟知的绝对时间, 例如 Java的 System.currentTimeMillis()) )
  • 事件时间 指的是数据本身携带的时间。这个时间是在事件产生时的时间。
  • 摄入时间 指的是数据进入 Flink 的时间;在系统内部,会把它当做事件时间来处理

1)处理时间

共有三种方法可以定义处理时间

  • 在创建表的 DDL 中定义:处理时间属性可以在创建表的 DDL 中用计算列的方式定义,用 PROCTIME() 就可以定义处理时间,函数 PROCTIME() 的返回类型是 TIMESTAMP_LTZ 。
user_action_time AS PROCTIME() -- 声明一个额外的列作为处理时间属性
  • 在 DataStream 到 Table 转换时定义
    处理时间属性可以在 schema 定义的时候用 .proctime 后缀来定义。时间属性一定不能定义在一个已有字段上,所以它只能定义在 schema 定义的最后。
  • 使用 TableSource 定义:在实现了 DefinedProctimeAttribute 的 TableSource 中定义

2)事件时间

事件时间允许程序按照数据中包含的时间来处理,这样可以在有乱序或者晚到的数据的情况下产生一致的处理结果。它可以保证从外部存储读取数据后产生可以复现(replayable)的结果。为了能够处理乱序的事件,并且区分正常到达和晚到的事件,Flink 需要从事件中获取事件时间并且产生 watermark(watermarks)。 同样也有3中定义方式

  • 在 DDL 中定义:WATERMARK 语句在一个已有字段上定义一个 watermark 生成表达式,同时标记这个已有字段为时间属性字段
  -- 声明 user_action_time 是事件时间属性,并且用 延迟 5 秒的策略来生成 watermark
  WATERMARK FOR user_action_time AS user_action_time - INTERVAL '5' SECOND
  • 在 DataStream 到 Table 转换时定义:事件时间属性可以用 .rowtime 后缀在定义 DataStream schema 的时候来定义(可以是在schema的结尾追加一个新字段,也可以替换一个已经存在的字段)

  • 使用 TableSource 定义:在实现了 DefinedRowTimeAttributes 的 TableSource 中定义。

4、时态表

时态表(Temporal Table)是一张随时间变化的表。

版本表: 如果时态表中的记录可以追踪和并访问它的历史版本,这种表我们称之为版本表,来自数据库的 changelog 可以定义成版本表。

普通表: 如果时态表中的记录仅仅可以追踪并和它的最新版本,这种表我们称之为普通表,来自数据库 或 HBase 的表可以定义成普通表。

声明版本表

在 Flink 中,定义了主键约束事件时间属性的表就是版本表

-- 定义一张版本表
CREATE TABLE product_changelog (
  product_id STRING,
  product_name STRING,
  product_price DECIMAL(10, 4),
  update_time TIMESTAMP(3) METADATA FROM 'value.source.timestamp' VIRTUAL,
  PRIMARY KEY(product_id) NOT ENFORCED,      -- (1) 定义主键约束
  WATERMARK FOR update_time AS update_time   -- (2) 通过 watermark 定义事件时间              
) WITH (
  'connector' = 'kafka',
  'topic' = 'products',
  'scan.startup.mode' = 'earliest-offset',
  'properties.bootstrap.servers' = 'localhost:9092',
  'value.format' = 'debezium-json'
);

声明版本视图

Flink 也支持定义版本视图只要一个视图包含主键事件时间便是一个版本视图。

CREATE VIEW versioned_rates AS              
SELECT currency, rate, currency_time            -- (1) `currency_time` 保留了事件时间
  FROM (
      SELECT *,
      ROW_NUMBER() OVER (PARTITION BY currency  -- (2) `currency` 是去重 query 的 unique key,可以作为主键
         ORDER BY currency_time DESC) AS rowNum 
      FROM RatesHistory ) -- RatesHistory是一张版本表
WHERE rowNum = 1; 

声明普通表

普通表的声明和 Flink 建表 DDL 一致

-- 用 DDL 定义一张 HBase 表,然后我们可以在 SQL 中将其当作一张时态表使用
-- 'currency' 列是 HBase 表中的 rowKey
 CREATE TABLE LatestRates (   
     currency STRING,   
     fam1 ROW<rate DOUBLE>   
 ) WITH (   
    'connector' = 'hbase-1.4',   
    'table-name' = 'rates',   
    'zookeeper.quorum' = 'localhost:2181'   
 );
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容