VTK是什么
实际上是基于OpenGL的图形开发函数库。
- OpenGL + OOP
- C++作为核心, 有Tcl、Python、Java的接口
- 支持多种数据类型
- Open Source
VTK典型流程
** Data --> Geometry --> Image **
左边一纵列对应Data --> Gemoetry
右边一纵列对应Gemotry --> Image
Data --> Geometry
包括vtkSource, vtkFilter, vtkMapper
- vtkSource : 各类图形的数字构成,以及各种图像文件的读写数据等
- vtkFilter : 以数据对象作为输入,输出处理后的数据对象。实现各种图像处理算法。
- vtkMapper : 将Data转换为Gemoetry数据,作为下一步显示的图形来源。vtkMapper接收Filter的输入,但不产生输出。整体作为下一步处理的基础。
Geometry --> Image
包括vtkActor, vtkRenderer, vtkRenderWindow
- vtkActor : 代表了一个在场景中被渲染的物体,例如一个锥体或一个立方体,自身可以设定多个属性,如坐标、旋转角度、表明材质、反光效果、透明度等等
- vtkRenderer : 负责渲染物体的进程,可以设置显示角度、光照角度等等属性
- vtkRenderWindow : 在操作系统上显示的一个窗口,可以包含一个或者多个vtkRenderer,上图中左边那个窗口中就有两个Renderer
整体流水线
Example
/*=========================================================================
Program: Visualization Toolkit
Module: Cone.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//
// This example creates a polygonal model of a cone, and then renders it to
// the screen. It will rotate the cone 360 degrees and then exit. The basic
// setup of source -> mapper -> actor -> renderer -> renderwindow is
// typical of most VTK programs.
//
// First include the required header files for the VTK classes we are using.
#include "vtkConeSource.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderWindow.h"
#include "vtkCamera.h"
#include "vtkActor.h"
#include "vtkRenderer.h"
int main()
{
//
// Next we create an instance of vtkConeSource and set some of its
// properties. The instance of vtkConeSource "cone" is part of a
// visualization pipeline (it is a source process object); it produces data
// (output type is vtkPolyData) which other filters may process.
//
vtkConeSource *cone = vtkConeSource::New();
cone->SetHeight( 3.0 );
cone->SetRadius( 1.0 );
cone->SetResolution( 10 );
//
// In this example we terminate the pipeline with a mapper process object.
// (Intermediate filters such as vtkShrinkPolyData could be inserted in
// between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We
// connect the output of the cone souece to the input of this mapper.
//
vtkPolyDataMapper *coneMapper = vtkPolyDataMapper::New();
coneMapper->SetInputConnection( cone->GetOutputPort() );
//
// Create an actor to represent the cone. The actor orchestrates rendering
// of the mapper's graphics primitives. An actor also refers to properties
// via a vtkProperty instance, and includes an internal transformation
// matrix. We set this actor's mapper to be coneMapper which we created
// above.
//
vtkActor *coneActor = vtkActor::New();
coneActor->SetMapper( coneMapper );
//
// Create the Renderer and assign actors to it. A renderer is like a
// viewport. It is part or all of a window on the screen and it is
// responsible for drawing the actors it has. We also set the background
// color here.
//
vtkRenderer *ren1= vtkRenderer::New();
ren1->AddActor( coneActor );
ren1->SetBackground( 0.1, 0.2, 0.4 );
//
// Finally we create the render window which will show up on the screen.
// We put our renderer into the render window using AddRenderer. We also
// set the size to be 300 pixels by 300.
//
vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->AddRenderer( ren1 );
renWin->SetSize( 300, 300 );
//
// Now we loop over 360 degreeees and render the cone each time.
//
int i;
for (i = 0; i < 360; ++i)
{
// render the image
renWin->Render();
// rotate the active camera by one degree
ren1->GetActiveCamera()->Azimuth( 1 );
}
//
// Free up any objects we created. All instances in VTK are deleted by
// using the Delete() method.
//
cone->Delete();
coneMapper->Delete();
coneActor->Delete();
ren1->Delete();
renWin->Delete();
return 0;
}