left join,right join,inner join,full join之间的区别

sql中的连接查询有inner join(内连接)、left join(左连接)、right join(右连接)、full join(全连接)四种方式,它们之间其实并没有太大区别,仅仅是查询出来的结果有所不同。
例如我们有两张表:


这里写图片描述

Orders表通过外键Id_P和Persons表进行关联。

1.inner join(内连接),在两张表进行连接查询时,只保留两张表中完全匹配的结果集。

我们使用inner join对两张表进行连接查询,sql如下:

SELECT p.LastName, p.FirstName, o.OrderNo
FROM Persons p
INNER JOIN Orders o
ON p.Id_P=o.Id_P and 1=1  --用and连接多个条件
ORDER BY p.LastName

查询结果集:


这里写图片描述

此种连接方式Orders表中Id_P字段在Persons表中找不到匹配的,则不会列出来。

注意:单纯的select * from a,b是笛卡尔乘积。比如a表有5条数据,b表有3条数据,那么最后的结果有53=15条数据。*

但是如果对两个表进行关联:select * from a,b where a.id = b.id 意思就变了,此时就等价于:

select * from a inner join b on a.id = b.id。即就是内连接。

但是这种写法并不符合规范,可能只对某些数据库管用,如sqlserver。推荐最好不要这样写。最好写成inner join的写法。

[内连接查询 (select * from a join b on a.id = b.id) 与 关联查询 (select * from a , b where a.id = b.id)的区别]

1.首先了解 on 、where 的执行顺序以及效率?

from a join b 与 from a, b 产生的临时表结果集 都是执行笛卡尔积即(select * from a cross join b )两表的行乘积数。

on :与取得结果集同步进行数据刷选及过滤。

where : 获得结果集之后,才进行数据刷选及过滤。

执行顺序:on在上游,where在中游,having在下游。

案例:1.select * from test_text tx left outer join test_test ts on tx.id =ts.tid; 执行结果:


image.png

2.select * from test_text tx left outer join test_test ts on tx.id =ts.tid where tx.id =ts.tid;
3.select * from test_text tx left outer join test_test ts on tx.id =ts.tid where tx.id =ts.tid having tx.id =5;


image.png

2.left join,在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。
我们使用left join对两张表进行连接查询,sql如下:
SELECT p.LastName, p.FirstName, o.OrderNo
FROM Persons p
LEFT JOIN Orders o
ON p.Id_P=o.Id_P
ORDER BY p.LastName

查询结果如下:


image.png

可以看到,左表(Persons表)中LastName为Bush的行的Id_P字段在右表(Orders表)中没有匹配,但查询结果仍然保留该行。

3.right join,在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。

我们使用right join对两张表进行连接查询,sql如下:

SELECT p.LastName, p.FirstName, o.OrderNo
FROM Persons p
RIGHT JOIN Orders o
ON p.Id_P=o.Id_P
ORDER BY p.LastName

查询结果如下:

这里写图片描述

Orders表中最后一条记录Id_P字段值为65,在左表中没有记录与之匹配,但依然保留。

4.full join,在两张表进行连接查询时,返回左表和右表中所有没有匹配的行。

我们使用full join对两张表进行连接查询,sql如下:

SELECT p.LastName, p.FirstName, o.OrderNo
FROM Persons p
FULL JOIN Orders o
ON p.Id_P=o.Id_P
ORDER BY p.LastName

查询结果如下:


这里写图片描述

查询结果是left join和right join的并集。

这些连接查询的区别也仅此而已。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355