10X单细胞(10X空间转录组)TCR数据分析之TCRdist(3)

今天我们继续扫盲,学习一些基础的知识和概念。

Gene enrichment and covariation analysis

其实我们在做TCR分析的时候,应该也是实验组 + 对照组进行分析,其中做重要的就是我们要寻找实验组在接受病原刺激后TCR重排选择基因的偏好性。Gene usage preferences were quantified by calculating a normalized Jensen–Shannon divergence (JSD) between the observed gene segment frequencies for each repertoire and background gene frequencies calculated from large-scale repertoire profiling studies,这里其实就是相对于正常的样本,疾病样本在TCR重排基因选择的偏好性,当然,这里用到的是JS散度,大家可以参考文章KL散度、JS散度、Wasserstein距离,JSD 是 Kullback-Leibler 散度的对称版本,further normalize the JSD values by dividing them by the mean Shannon entropy(香农熵,又叫信息熵,大家参考我之前的文章10X单细胞(10X空间转录组)基础算法之KL散度) of the two distributions being compared, which helps to correct for variation in total gene number across segments。To set lower significance thresholds for the JSD heat maps(that is, the values below which the mapped colour is a uniform dark blue)。
图片.png
we compared the 2–4 different background repertoire datasets(这里就设置成我们的对照样本) for each chain/organism to one another and took the largest observed JSD value across all comparisons.
Covariation(协变,协方差) between gene usage in different segments was quantified using the adjusted mutual information,a variant of the mutual information metric that corrects for the numbers and frequencies of the observed genes (mutual information between pairs of distributions tends to increase with the number of observation classes)。当然,这个在单细胞数据中其实应该用到的不多。

CDR3 motif discovery.

used a simple, depth-first search procedure to identify over-represented sequence patterns in the CDR3 amino sequences of each repertoire.Motifs were represented as fixed-length patterns consisting of fully-specified amino acid positions, wild card positions, and amino acid group positions,The score of a motif was calculated using a chi-squared formalism:

motif\_score = (observed − expected)2 / expected

where ‘observed’ represents the number of times the motif was observed in the repertoire sequences and ‘expected’ represents an estimate of the expected number of observations based on a background set of TCR sequences with V and J gene compositions that match the observed repertoire(这里的背景我们设置为单细胞的对照样本)。(这一部分才是最为关键的地方)。
Starting with two-position motifs scoring above a seed threshold, each motif was iteratively extended by adding new specified positions (that is, replacing an internal wild card or lengthening the motif at either end) that increased the motif score.The set of identified motifs were sorted by motif score and filtered for redundancy。Finally, motifs scoring above a threshold were extended to include near-neighbour TCRs using a stringent distance threshold; this allowed us to capture additional pattern instances that were not captured by our limited set of amino acid groupings. The final set of motifs for each repertoire were visualized using the TCR logo representation。(看来这才是TCR分析正确的打开方式)。

TCRdiv 多样性的衡量(也很重要)

为了衡量多样性,generalizes Simpson’s diversity index by accounting for TCR similarity as well as exact identity(关于辛普森多样性指数,大家可以百度百科一下)。辛普森多样性可以被认为是衡量从混合总体中抽取两个独立样本中相同物种或类别的项目的概率,或者换句话说,如果样本是返回 1 的两个抽取样本的函数的期望值 相同,否则为 0 。We instead estimate the expected value of a Gaussian function(高斯函数,确实需要很多的数学知识) of the inter-sample distance that returns 1 if the two samples are identical and exp(− (TCRdist(a,b) / s.d.)2) otherwise, where the s.d. was taken to be 18.45 for single-chain distances and twice that for paired analyses based on empirical assessments of receptor distance distributions for multiple epitopes。Taking the inverse of this estimate gives a diversity measure (TCRdiv) that can be interpreted as an effective population size for similarity-weighted sharing.(这部分有点难以理解,大家需要多一些耐心和学习了).

这部分的代码在tcr-dist,作者已经都封装好了,我们用一下就可以,感兴趣大家可以多多学习一下。

到目前为止,算是把基础说完了,接下来的分析,就要更上一层楼了。

生活很好,有你更好

©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容