图像搜索引擎的3种类型:标签搜索、范例搜索和混合搜索

如果想构建一个图像搜索引擎,那如何对图像进行搜索呢?一种方式是依赖于与图像相关联的标签、关键字和文字描述,这种称为标签搜索,或者叫以文搜图。另一种方式是通过量化图像并提取一组数字来表示图像的颜色、纹理或者形状,然后通过对比图像之间相似度来搜索图像,这种成为范例搜索,或者叫以图搜图。最后一种是结合前面两种方式,既依赖与图像相关的文字信息,也同时量化图像本身,称为混合搜索。

标签搜索

在谷歌或百度输入关键字并点击搜索按钮,这是我们熟悉的文本搜索方式,而图像的标签搜索与文本搜索很相似。图像的标签搜索引擎很少关注图像本身,而依赖于文字线索。这些线索可以有各种来源,但主要方法是:

手动注释:

在这种情况下,管理员或者用户提供图像内容的标签和关键字。例如,我们来看下面这副来自于“侏罗纪公园”的屏幕截图。

图1 :恐龙、速龙、厨房、餐厅厨房、男孩、害怕

我们会给这张图片关联那些标签和关键字呢。只要我们看这张图片几秒钟,我们就可以提出几个标签来描述图片:恐龙、速龙、厨房、餐厅厨房、男孩、害怕。这就是图像的手动注释,我们刚刚做的就是这个事情。

上下文提示:

通常,上下文提示仅适用于网页。与手动注释我们必须人工提取标签不同,上下文提示会自动检查图像周围的文字内容或图片标签。这种方法的缺点是我们要假设图像的内容与网页上的文本有关。这可能适用于诸如百度百科这样的网站,其页面上的图像与文章的内容高度相关,但是假如对本篇文章做上下文提示,则会错误的将侏罗纪公园图像与图像搜索引擎相关的一些关键字进行联系。

范例搜索

假如你是百度或者谷歌,你有数十亿的图片可以搜索。你会手动标记每个图片吗?当然不会。这太费时,也太昂贵了。上下文提示如何呢?这是一种自动的方法,但是我们上面提到了其局限性。仅仅依靠图像所在网页的文字做关联,可能会获得一些非常奇怪的结果。
我们可以考虑构建“范例搜索”图像搜索引擎。这些类型的图像搜索引擎尝试量化图像本身,称为基于内容的图像检索(CBIR)系统。一个简单的例子是通过图像中像素强度的平均值,标准偏差和偏度来表征图像的颜色。(如果只是构建一个简单的图像搜索引擎,在许多情况下,这种方法实际效果很好)
对于给定的图像数据集,我们将数据集中的所有图像都计算出特征值,并将其存储在磁盘上。当我们量化图像时,我们描述图像并提取图像特征。这些图像特征是图像的抽象,并用于表征图像内容。从图像集合中提取特征的过程称为索引。
假定现在我们从数据集中的每一个图像中都提取出了特征,如何进行搜索呢?第一步是为我们的系统提供一个查询图像,这是我们在数据集中寻找的一个范例。查询图像以与索引图像完全相同的方式提取特征。然后我们使用距离函数(如欧式距离)将我们的查询特征与索引数据集中的特征进行比对。然后根据相似性(欧几里德距离越小意味着越相似)的结果进行排序并显示出来。

混合方式

假如我们正在为Twitter建立一个图像搜索引擎。Twitter允许在推文中使用图片。同时,Twitter也允许你给自己的推文提供标签。
我们可以使用推文标签来建立图像的标签搜索,然后分析和量化图像本身特征,建立范例搜索。这样做的方式就是构建一个混合图像搜索引擎,其中包括文本关键字以及从图像中提取的特征。
最好的例子就是谷歌的图像搜索。谷歌的图像搜索是否实际分析图像本身特征?我打赌肯定有。但是谷歌首先是一个文本搜索引擎,因此它也允许你通过标签进行搜索。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容