面试 4:老师讲的递归解决斐波那契数列真的好吗

在搞「模拟面试」的日子,我发现大家普遍有个问题就是,感觉自己的能力总是到了瓶颈期,写了好几年代码,感觉只是会的框架比以前多了而已。去大公司面试,屡战屡败,问失败原因,大多数人的答案都是,在三面数据结构与算法的时候,直接就挂了。

而不少人表示,我数据结构与算法潜心修炼,把书都啃烂了,倒背如流,但每次一面试,咋就是不会呢?

归根结底,还是思维训练的问题,很多人知其然而不知其所以然,所以,南尘就尽量地贴近大家的常态化思维去帮助大家训练算法吧。

昨天已经给大家预告了,不知道小伙伴们下来有没有去自己尝试处理。但不管怎样,要想训练好算法,但听别人讲不去思考,是肯定没用的。好了废话不多说,进入正题!

来到今天的面试题

面试题:一直青蛙一次可以跳上 1 级台阶,也可以跳上 2 级,求该青蛙跳上 n 级的台阶总共有多少种跳法。

题目来源于《剑指 Offer》

一看这道题,好像没啥思路,感觉和我们的数据结构和常用的算法好像一点都不沾边。

但这看起来就像一道数学题,而且似乎就是高考数学的倒数第一题,所以我们就用数学来做吧。

数学中有个方法叫「数学归纳法」,我们这里就可以巧妙用到。

  1. 当 n = 1 时,青蛙有 1 种跳法;
  2. 当 n = 2 时,青蛙可以选择一次跳 1 级,跳两次;也可以选择一次跳 2 级;青蛙有 2 种跳法;
  3. 当 n = 3 时,青蛙可以选择 1-1-1,1-2,2-1,青蛙有 3 种跳法;
  4. 当 n = 4 时,青蛙可以选择 1-1-1-1,1-1-2,1-2-1,2-1-1,2-2,青蛙有 5 种跳法;
  5. 似乎能得到 f(3) = f(2) + f(1),f(4) = f(3) + f(2),这是 f(n) = f(n-1) + f(n-2) 的节奏?我们得用 n = 5 验证一下。
  6. 当 n = 5 时,青蛙可以选择 1-1-1-1-1,1-1-1-2,1-1-2-1,1-2-1-1,2-1-1-1,1-2-2,2-1-2,2-2-1,青蛙有 8 种跳法,f(5) = f(4) + f(3) 成立。

这是最笨的方法了,得出了这确实就是一个典型的斐波那契数列,唯一不一样的地方就是 n =2 的时候并没有 f(2) = f(0) + f(1)。

稍微有点思维能力的可能更简单。

  1. n = 1 ,青蛙有 1 种跳法;
  2. n = 2 ,青蛙有 2 种跳法;
  3. n = 3,青蛙在第 1 级可以跳 1 种,后面 2 级相当于 f(3-1) = f(2),还有一种就是先跳 2 级,然后后面 1 级有 f(3-2) = f(1) 种跳法,可以得出 f(3) = f(2) + f(1);
  4. ...
  5. 当取 n 时,青蛙在第一次跳 1 级,后面的相当于有 f(n-1) 种跳法;假设第一次跳 2 级,后面相当于有 f(n-2) 种跳法;故可以得出 f(n) = f(n-1) + f(n-2);

这样思考可能更不容易出错吧,这就是思维的提炼过程,可见我们高考常考的「数学归纳法」是多么地有用。

既然能分析出这是一道典型的斐波那契数列了,我想教科书都教给大家方法了,不过一定要注意 n = 2 的时候,正常的斐波那契数列值应该是 1,而我们是 2。大多数人肯定会写出下面的代码:

public class Test09 {

    private static int fn(int n) {
        if (n <= 0)
            return 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;
        else
            return fn(n - 1) + fn(n - 2);
    }

    public static void main(String[] args) {
        System.out.println(fn(1));
        System.out.println(fn(2));
        System.out.println(fn(3));
        System.out.println(fn(4));
    }
}

我们教科书上反复用这个问题来讲解递归函数,但并不能说明递归的解法是最适合这个题目的。当我们暗自窃喜完成了这道面试题的时候,或许面试官会告诉我们,上面的这种递归解法存在很严重的效率问题,并让我们分析其中的原因。

我们以求 fn(10) 为例,要想求得 fn(10),需要先求得 fn(9) 和 fn(8);同样,要求得 fn(9),需要先求得 fn(8) 和 fn(7)......

这存在一个很大的问题,我们一定会去重复计算很多值,我们一定得想办法把这个计算好的值存放起来。

避免重复计算

既然我们找到了问题所在,那改进方法自然是信手拈来了。我们目前的算法是「从大到小」计算,而我们只需要反向「从小到大」计算就可以了。我们根据 fn(1) 和 fn(2) 计算出 fn(3),再根据 fn(2) 和 fn(3) 计算出 fn(4)......

很容易理解,这样的算法思路时间复杂度是 O(n),实现代码如下:

public class Test09 {

    private static long fn(int n) {
        if (n <= 0)
            return 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;
        long prePre = 1, pre = 2;
        long result = 0;
        for (int i = 3; i <= n; i++) {
            result = prePre + pre;
            prePre = pre;
            pre = result;
        }
        return result;
    }

    public static void main(String[] args) {
        System.out.println(fn(1));
        System.out.println(fn(3));
        System.out.println(fn(50));
        System.out.println(fn(100));
    }
}

上面的代码,一定要注意做了一点小修改,我们把返回值悄悄地改成了 long ,因为我们并不能保证客户端是否会输入一个比较大的数字,比如:100,这样,如果返回值为 int,一定会因为超出了最大值而显示错误的,解决方案就是把值换为更大容量的 long。但有时候你会发现,long 的容量也不够,毕竟整型和长整型,它都会有最大显示值,在遇到这样的情况的时候。我们最好和面试官交流一下,是否处理这样的情况。如果一定要处理这样的情况,那么可能你就得用 String 来做显示处理了。

其实在《剑指 Offer》上还有时间复杂度为 O(logn) 的解法,但因为不够实用,我们这里也就不讲解了,主要还是我们解题的算法思路训练。如果真的很感兴趣的话,那就请移步《剑指 Offer》吧。反正你在公众号后台回复「剑指Offer」就可以拿到 PDF 版本的。

总结

今天的面试讲解就到这吧,大家一定要学会自己去独立思考,训练自己的思维。简单回顾一下我们本周所学习的内容,我们下周再见!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容

  • 不知不觉来北京有一个月了。准确来说是一个月零2天。时间真的过得好快。 工作 工作上基本适应了现在公司的模式,但还有...
    agua0106阅读 241评论 0 0
  • 荣华是天香楼的头牌。 她长得漂亮,会唱小曲儿,会拨琴,发髻上老簪一支桃木莲花纹钗。 京城里就数她荣华名声儿最高,就...
    _孙春花阅读 494评论 2 1
  • 【名窑名瓷】磁州窑、井陉窑 (四)磁州窑 (五)井陉窑 河北博物院【名窑名瓷】(一)
    懒话梅阅读 1,747评论 0 0
  • 你说过 在天愿作比翼鸟 ,在地愿为连理枝 你说过 你用图纸,键盘,忙碌,打造你的金融事业 我说过 我用风花,月夜,...
    爱上一叶浮萍阅读 371评论 5 15