OC底层知识(六) : 性能优化

一、CPU和GPU 的介绍

  • 1.1、在屏幕成像的过程中,CPU和GPU起着至关重要的 作用
    • CPU(Central Processing Unit,中央处理器),对象的创建和销毁、对象属性的调整、布局计算、文本的计算和排版、图片的格式转换和解码、图像的绘制(Core Graphics)
    • GPU(Graphics Processing Unit,图形处理器),纹理的渲染,说白了就是界面的展示


      CPU和GPU的机制图
    • 在iOS中是双缓冲机制,有前帧缓存、后帧缓存
  • 1.2、屏幕成像原理


    屏幕成像原理
  • 1.3、卡顿产生的原因


    卡顿产生的原因:CPU与GPU的消耗时间太长
    • 卡顿解决的主要思路:尽可能减少CPU、GPU资源消耗
    • 按照60FPS(1秒钟刷新60帧)的刷帧率,每隔16ms(1000s/60 = 16ms)就会有一次VSync信号,就可以保证不会卡,也不会掉帧

二、卡顿优化 - CPU

  • 2.1、尽量用轻量级的对象,比如用不到事件处理的地方,可以考虑使用CALayer取代UIView
  • 2.2、不要频繁地调用UIView的相关属性,比如frame、bounds、transform等属性,尽量减少不必要的修改
  • 2.3、尽量提前计算好布局,在有需要时一次性调整对应的属性,不要多次修改属性
  • 2.4、Autolayout会比直接设置frame消耗更多的CPU资源
  • 2.5、图片的size最好刚好跟UIImageView的size保持一致
  • 2.6、控制一下线程的最大并发数量
  • 2.7、尽量把耗时的操作放到子线程
    • 文本处理(尺寸计算、绘制)
    • 图片处理(解码、绘制)

三、卡顿优化 - GPU

  • 3.1、尽量避免短时间内大量图片的显示,尽可能将多张图片合成一张进行显示
  • 3.2、GPU能处理的最大纹理尺寸是4096x4096,一旦超过这个尺寸,就会占用CPU资源进行处理,所以纹理尽量不要超过这个尺寸
  • 3.3、尽量减少视图数量和层次
  • 3.4、减少透明的视图(alpha<1),不透明的就设置opaque为YES(默认就是YES)
  • 3.5、尽量避免出现离屏渲染
  • 3.6、离屏渲染
    • 在OpenGL中,GPU有2种渲染方式
      On-Screen Rendering:当前屏幕渲染,在当前用于显示的屏幕缓冲区进行渲染操作
      Off-Screen Rendering:离屏渲染,在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作

    • 离屏渲染消耗性能的原因
      需要创建新的缓冲区
      离屏渲染的整个过程,需要多次切换上下文环境,先是从当前屏幕(On-Screen)切换到离屏(Off-Screen);等到离屏渲染结束以后,将离屏缓冲区的渲染结果显示到屏幕上,又需要将上下文环境从离屏切换到当前屏幕

    • 哪些操作会触发离屏渲染?

      • 光栅化,layer.shouldRasterize = YES
      • 遮罩,layer.mask
      • 圆角,同时设置layer.masksToBounds = YES、layer.cornerRadius大于0,可以考虑通过CoreGraphics绘制裁剪圆角,或者叫美工提供圆角图片
      • 阴影,layer.shadowXXX,如果设置了layer.shadowPath就不会产生离屏渲染

四、耗电优化

  • 4.1、耗电的主要来源

    耗电的主要来源

    • CPU处理,Processing
    • 网络,Networking
    • 定位,Location
    • 图像,Graphics
  • 4.2、耗电优化

    • CPU处理,Processing
      • 尽可能降低CPU、GPU功耗
    • 少用定时器
    • 优化I/O操作
      • 尽量不要频繁写入小数据,最好批量一次性写入
      • 读写大量重要数据时,考虑用dispatch_io,其提供了基于GCD的异步操作文件I/O的API。用dispatch_io系统会优化磁盘访问
      • 数据量比较大的,建议使用数据库(比如SQLite、CoreData)
    • 网络优化
      • 减少、压缩网络数据
      • 如果多次请求的结果是相同的,尽量使用缓存
      • 使用断点续传,否则网络不稳定时可能多次传输相同的内容
      • 网络不可用时,不要尝试执行网络请求
      • 让用户可以取消长时间运行或者速度很慢的网络操作,设置合适的超时时间
      • 批量传输,比如,下载视频流时,不要传输很小的数据包,直接下载整个文件或者一大块一大块地下载。如果下载广告,一次性多下载一些,然后再慢慢展示。如果下载电子邮件,一次下载多封,不要一封一封地下载
    • 定位优化
      • 如果只是需要快速确定用户位置,最好用CLLocationManager的requestLocation方法。定位完成后,会自动让定位硬件断电
      • 如果不是导航应用,尽量不要实时更新位置,定位完毕就关掉定位服务
      • 尽量降低定位精度,比如尽量不要使用精度最高的kCLLocationAccuracyBest
      • 需要后台定位时,尽量设置pausesLocationUpdatesAutomatically为YES,如果用户不太可能移动的时候系统会自动暂停位置更新
      • 尽量不要使用startMonitoringSignificantLocationChanges,优先考虑startMonitoringForRegion:
    • 硬件检测优化
      • 用户移动、摇晃、倾斜设备时,会产生动作(motion)事件,这些事件由加速度计、陀螺仪、磁力计等硬件检测。在不需要检测的场合,应该及时关闭这些硬件
  • 五、APP的启动的优化

    • 5.1、APP的启动可以分为2种
      • 冷启动(Cold Launch):从零开始启动APP
      • 热启动(Warm Launch):APP已经在内存中,在后台存活着,再次点击图标启动APP
    • 5.2、APP启动时间的优化,主要是针对冷启动进行优化
      • 通过添加环境变量可以打印出APP的启动时间分析(Product -> Scheme-> Edit scheme -> Run -> Arguments->Environment Variables下添加)
      • DYLD_PRINT_STATISTICS设置为1提示在:iOS 13之后这个设置就无效了
        DYLD_PRINT_STATISTICS 大概的耗时统计
      • 如果需要更详细的信息,那就将DYLD_PRINT_STATISTICS_DETAILS设置为1
        更详细的信息
    • 5.3、APP的冷启动可以概括为3大阶段


      APP的冷启动可以概括为3大阶段
      • dyld(dynamic link editor),Apple的动态链接器,可以用来装载Mach-O文件(可执行文件、动态库等)
        • 启动APP时,dyld所做的事情有,1.装载APP的可执行文件,同时会递归加载所有依赖的动态库,2.当dyld把可执行文件、动态库都装载完毕后,会通知Runtime进行下一步的处理
      • runtime,启动APP时所做的事情有
        • 调用map_images进行可执行文件内容的解析和处理
        • 在load_images中调用call_load_methods,调用所有Class和Category的+load方法
        • 进行各种objc结构的初始化(注册Objc类 、初始化类对象等等)
        • 调用C++静态初始化器和attribute((constructor))修饰的函数
        • 到此为止,可执行文件和动态库中所有的符号(Class,Protocol,Selector,IMP,…)都已经按格式成功加载到内存中,被runtime 所管理
      • main
        • APP的启动由dyld主导,将可执行文件加载到内存,顺便加载所有依赖的动态库
        • 并由runtime负责加载成objc定义的结构
        • 所有初始化工作结束后,dyld就会调用main函数
        • 接下来就是UIApplicationMain函数,AppDelegateapplication:didFinishLaunchingWithOptions:方法
    • 5.4、APP的启动优化方案(按照不同的阶段)
      • dyld

        • 减少动态库、合并一些动态库(定期清理不必要的动态库)
        • 减少Objc类、分类的数量、减少Selector数量(定期清理不必要的类、分类)
        • 减少C++虚函数数量
        • Swift尽量使用struct
      • runtime

        • 用+initialize方法和dispatch_once取代所有的attribute((constructor))、C++静态构造器、ObjC的+load
          initialize取代initload方法
      • main

        • 在不影响用户体验的前提下,尽可能将一些操作延迟,不要全部都放在finishLaunching方法中
        • 按需加载(举个例子,刚进入app只需要加载首页的收据就好了,不需要加载所有页面的数据)
  • 六、安装包瘦身

    • 6.1、安装包(IPA)主要由可执行文件、资源组成
    • 6.2、资源(图片、音频、视频等)
      • 采取无损压缩(资源质量不会发生变化,但是大小会变小,必须图片用 png图片压缩神器)
      • 去除没有用到的资源,下面是我测试图片资源的情况,我在桌面有一个项目CPU&GPU,里面放了几张图片,都没有使用
        CPU&GPU

        利用LSUnusedResources检测没有使用的资源
    • 6.3、可执行文件瘦身
      • 编译器优化
        • (1)Strip Linked ProductMake Strings Read-OnlySymbols Hidden by Default设置为YES,xcode 默认这些都是 YES
          编译器优化
        • (2)去掉异常支持,Enable C++ ExceptionsEnable Objective-C Exceptions设置为NOOther C Flags添加-fno-exceptions
          Enable C++ Exceptions
        • (3)利用 AppCode 检测未使用的代码:菜单栏 ->Code->InspectCode
        • (4)编写LLVM插件检测出重复代码、未被调用的代码(这个比较难)
        • (5) LinkMap,生成LinkMap文件,可以查看 可执行文件的具体组成(生成文件后记得回复原样)
          LinkMap

          上面的地址我写为了/Users/wangchong/Desktop/,运行之后再桌面生成了CPU&GPU-LinkMap-normal-x86_64.txt文件
          CPU&GPU-LinkMap-normal-x86_64.txt
        • 分析LinkMap文件


          分析LinkMap文件
        • 借助第三方工具解析LinkMap文件:https://github.com/huanxsd/LinkMap
          解析LinkMap文件
  • 七、下面是几个问题(不懂的看上面)

    • 你在项目中是怎么优化内存的?
    • 优化你是从哪几方面着手?
    • 列表卡顿的原因可能有哪些?你平时是怎么优化的?
    • 遇到tableView卡顿嘛?会造成卡顿的原因大致有哪些?
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容

  • CPU和GPU 在屏幕成像的过程中,CPU和GPU起着至关重要的作用 CPU(Central Processing...
    曹来东阅读 334评论 0 0
  • CPU和GPU 在屏幕成像的过程中,CPU和GPU起着至关重要的作用==CPU==(Central Process...
    斑驳的流年无法释怀阅读 1,627评论 0 26
  • 用两张图告诉你,为什么你的 App 会卡顿? - Android - 掘金 Cover 有什么料? 从这篇文章中你...
    hw1212阅读 12,712评论 2 59
  • 面试中常常问道性能优化的问题,其中有几个主要的 你在项目中是怎么优化内存的? 优化你是从哪几方面着手? 列表卡顿的...
    Rathen阅读 27,043评论 5 102
  • 一、卡顿优化 在屏幕成像的过程中,CPU和GPU起着至关重要的作用。CPU(Central Processing ...
    伶俐ll阅读 809评论 0 1