基于Mysql表结构生成Hive表结构

背景

业务系统库数据迁移到Hadoop平台做分析要涉及到所有迁入的表结构要类型和表结构语句的更改,部分表字段可能两三百个字段,对程序员来说捉行手动修改简直始终煎熬。。。

表结构

mysql
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`city_id` int(11) NOT NULL DEFAULT '0' COMMENT '大区ID',
`presona_id` int(11) NOT NULL DEFAULT '0' COMMENT '营业部ID',
`submit_pre_id` int(11) NOT NULL DEFAULT '0' COMMENT '提交人ID',
`submit_pre_name` varchar(20) NOT NULL DEFAULT '0' COMMENT '提交人姓名',
`pieces_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '判断贷款信息是否提交过',
`personal_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '判断个人信息是否添加过',
`product_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '判断房产信息是否添加过',
`work_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '判断工作信息是否添加过',
`link_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '判断联系人信息是否添加',
`bank_sub_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '人行报告信息是否添加',
`client_mes_id` int(11) NOT NULL DEFAULT '0' COMMENT '客户基本信息ID',
`use` tinyint(4) NOT NULL DEFAULT '0' COMMENT '贷款用途',
`use_other` varchar(20) NOT NULL DEFAULT '0',
`count` int(11) NOT NULL DEFAULT '0' COMMENT '申请额度',
`highest` int(11) NOT NULL DEFAULT '0' COMMENT '最高还款金额',
`education` tinyint(4) NOT NULL DEFAULT '0' COMMENT '学历',
`email` varchar(50) NOT NULL COMMENT '邮箱',
`account_place_p` varchar(15) NOT NULL DEFAULT '0' COMMENT '户口所在地/省',
`account_place_c` varchar(30) NOT NULL DEFAULT '0' COMMENT '户口所在地/市',
`account_place_other` varchar(90) NOT NULL DEFAULT '' COMMENT '户口所在地/详细',
`account_id` varchar(10) NOT NULL DEFAULT '0' COMMENT '户口所在地邮编',
`now_place_p` varchar(15) NOT NULL DEFAULT '0' COMMENT '现居住地/省',
`now_place_c` varchar(30) NOT NULL DEFAULT '0' COMMENT '现居住地/市',
`now_place_other` varchar(60) NOT NULL DEFAULT '0' COMMENT '现居住地/详细',
`now_place_id` varchar(10) NOT NULL DEFAULT '0' COMMENT '现居住地邮编',
`marriage` tinyint(4) NOT NULL DEFAULT '0' COMMENT '婚姻状态0未婚1已婚2离异3丧偶',
`is_child` tinyint(4) NOT NULL DEFAULT '0' COMMENT '有无子女/1.有2.无',
`phone_log` tinyint(4) NOT NULL DEFAULT '0' COMMENT '有无电话详单0无 1有',
`house_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '住宅类型1234567',
`house_other` varchar(20) DEFAULT NULL COMMENT '住宅类型描述',
`house_pay` int(11) NOT NULL DEFAULT '0' COMMENT '住宅月还款/住在租金',
`city` varchar(20) NOT NULL DEFAULT '0' COMMENT '所在城市',
hive
`id` int ,
`city_id` int COMMENT '大区ID',
`presona_id` int COMMENT '营业部ID',
`submit_pre_id` int COMMENT '提交人ID',
`submit_pre_name` string COMMENT '提交人姓名',
`pieces_sub_type` tinyint COMMENT '判断贷款信息是否提交过',
`personal_sub_type` tinyint COMMENT '判断个人信息是否添加过',
`product_sub_type` tinyint COMMENT '判断房产信息是否添加过',
`work_sub_type` tinyint COMMENT '判断工作信息是否添加过',
`link_sub_type` tinyint COMMENT '判断联系人信息是否添加',
`bank_sub_type` tinyint COMMENT '人行报告信息是否添加',
`client_mes_id` int COMMENT '客户基本信息ID',
`use` tinyint COMMENT '贷款用途',
`use_other` string ,
`count` int COMMENT '申请额度',
`highest` int COMMENT '最高还款金额',
`education` tinyint COMMENT '学历',
`email` string COMMENT '邮箱',
`account_place_p` string COMMENT '户口所在地/省',
`account_place_c` string COMMENT '户口所在地/市',
`account_place_other` string COMMENT '户口所在地/详细',
`account_id` string COMMENT '户口所在地邮编',
`now_place_p` string COMMENT '现居住地/省',
`now_place_c` string COMMENT '现居住地/市',
`now_place_other` string COMMENT '现居住地/详细',
`now_place_id` string COMMENT '现居住地邮编',
`marriage` tinyint COMMENT '婚姻状态0未婚1已婚2离异3丧偶',
`is_child` tinyint COMMENT '有无子女/1.有2.无',
`phone_log` tinyint '有无电话详单0无 1有',
`house_type` tinyint COMMENT '住宅类型1234567',
`house_other` string COMMENT '住宅类型描述',
`house_pay` int COMMENT '住宅月还款/住在租金',
`city` string COMMENT '所在城市',

实现

我们用Spark core的算子根据mysql表结构生成hive表结构,从此遇见几百个字段表的生成不再桑心~~ 把spark作为一个工具是多么爽的一件事,API

/**
  * Created by Michael on 2017/2/23.
  */
object abstract_columms {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("mobike_gps").setMaster("local")
    val sc = new SparkContext(conf)
    val result = sc.textFile("C://work//data//select_eagle_intopieces.sql")
    val tableName =
    result.map(x=>{
      val line = x.split(" ")
      val col = line(0) //字段名称
      val col_type = line(1) //字段类型
      var comment = "" //字段注释
      if(x.contains("COMMENT")){
        comment = line(line.length-2)+" "+line(line.length-1) //字段注释
      }else{
        comment = ","
      }

      var hive_type = ""
      if(col_type.startsWith("int")  || col_type.startsWith("smallint") || col_type.startsWith("mediumint") ){ hive_type = "int"}
      else if(col_type.startsWith("varchar") ||  col_type.startsWith("char")){ hive_type = "string"}
      else if(col_type.startsWith("tinyint")){ hive_type = "tinyint"}
      else if(col_type.startsWith("double")){ hive_type = "double"}
      else if(col_type.startsWith("decimal")){ hive_type = "decimal"}
      else if(col_type.startsWith("float") ){ hive_type = "float"}
      else hive_type = "不匹配"

      col+" "+hive_type+" "+comment

    }
    ).saveAsTextFile("C://work//data//select_eagle_intopieces_result.sql")
    //.foreach(x=>println(x))
  }
}

FAQ

1.spark windows开发报错如下:

17/02/21 09:03:38 WARN : Your hostname, DESKTOP-CPHJP6L resolves to a loopback/non-reachable address: fe80:0:0:0:68ad:1d41:9a4d:2e7a%27, but we couldn't find any external IP address!
17/02/21 09:03:38 WARN DAGScheduler: Creating new stage failed due to exception - job: 0
org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/C:/work/data/word.txt
    at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:285)
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)

解决:pom文件指定的hadoop版本和window本地版本不一致

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,583评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,669评论 2 374
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,684评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,682评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,533评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,396评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,814评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,458评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,745评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,789评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,565评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,410评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,828评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,050评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,342评论 1 253
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,793评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,010评论 2 337

推荐阅读更多精彩内容