卡通化-看看二次元的你长什么样

cartoonize_show_4.jpg

CVPR2020收录了一篇卡通化的文章,Xinrui Wang和Jinze Yu的《Learning to Cartoonize Using White-box Cartoon Representations》。可以把人物或者风景画转换为卡通风格的图片,效果非常惊艳。

相比于之前深度学习为人诟病的“黑盒”学习,文章中提出了生成卡通化图片的“白盒”表示法,将图像分解为三种卡通表示,指导网络优化生成卡通照片,三种表示分别是surface表示、structure表示、texture表示。

cartoonzie_paper_1.jpg

我个人的理解是,图像的三种表示分别是表示图像的低频特征、中频(结构)特征和高频特征,就像是从远处、不远处和近处的视角分别看同一个人的过程:

  • 低频表示就是图像的整体外观,去掉了所有的纹理和细节。就像是遥望一个人,重点在“遥望”二字。这时只有一个整体的、模糊的观感,能看到这是一个人形生物,只能看到人身上衣服的主色调等信息,人物与周围背景的边界是模糊不清的。近似的人可以摘掉眼镜看看周围,近似700度的我摘了眼镜确认了下,大致就是这种感觉没跑了。
  • 结构表示或者中频表示,就像是更近一点看这个人,但是距离感仍然在,鼻子眼睛等细节还是看不清楚,但是人物轮廓甚至上下衣的轮廓可以看清了,仍然看不清脸。各部分的主色调也更加清晰了。
  • 高频表示就是近看了,细节、纹理和更精细的轮廓等信息都能看到了,这个时候就是所谓“有鼻子有眼”了。

图像被分解为surface表示、structure表示、texture表示之后,卡通化的任务也就比之前端对端的黑盒式学习明确了很多。作者提出用三个独立的模块分别去学习图像的这三种表示,即三个模块分别提取图像的低频、中频和高频的特征。

cartoonzie_paper_2.jpg

文章提出了一个包含一个生成器G(Generator)和两个判别器Ds(D_surface)和Dt(D_texture)的GAN框架。

  • Ds用于判别模型从源图像中提取的图像的低频表示与卡通图片(标注)

  • Dt用于判别模型从源图像中提取的图像的高频表示与卡通图片(标注)

  • 用预训练的VGG网络提取源图像的high-leval特征,并在提取的结构(中频)特征和输出之间以及输入照片和输出之间对全局内容施加空间约束

过程可以理解为,

  • 将输入图像通过导向滤波器处理,得到低频表示;
  • 通过超像素处理,得到中频表示;
  • 通过随机色彩变幻得到高频表示。
  • 卡通图像也一样。

将GAN生成器产生的fake_image分别于上述表示结果做损失。其中

  • 纹理(中频)表示与表面(低频)表示通过判别器得到损失
  • 中频特征比较复杂,fake_image的中频表示与fake_image,输入图像与fake_image,分别通过vgg19网络抽取特征,进行损失的计算。

总损失由以上各种损失加权,可以通过改变损失函数中每个特征loss的权重来调整卡通化结果的样式。

这样处理之后,对于大部分图片的卡通化处理都非常惊艳。来几张图看看效果吧。


cartoonize_show_4.jpg
cartoonize_show_1.jpg
cartoonize_show_2.jpg
cartoonize_show_3.jpg

想自己试试的小伙伴可以下方链接尝试:
自己试试卡通化吧

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345