13.seq2seq attention

一、seq2seq

seq2seq 模型就像一个翻译模型,输入是一个序列(比如一个英文句子),输出也是一个序列(比如该英文句子所对应的法文翻译)。这种结构最重要的地方在于输入序列和输出序列的长度是可变的。


20170509142145536.png

一般用Encode和decode机制,先把输入内容按照时间序列保存到一个矩阵中,然后解码翻译到目标文件,直到输出终止符。这个方法的问题是,时间序列太长的时候翻译效果比较差。

  • 1.1 编码器
    seq2seq网络的编码器是一个RNN,它为输入句子中的每个单词输出一些值. 对于每个输入字,编码器输出一个向量和一个隐藏状态,并将隐藏状态用于下一个输入字。


    encoder-network.png
  • 1.2 解码器
    在最简单的seq2seq解码器中,我们只使用编码器的最后一个输出. 这个最后的输出有时称为上下文向量,因为它从整个序列编码上下文. 该上下文向量被用作解码器的初始隐藏状态.
    decoder-network.png

二. 注意力解码器(attention )

注意力允许解码器网络针对解码器自身输出的每一步”聚焦”编码器输出的不同部分. 首先我们计算一组注意力权重. 这些将被乘以编码器输出矢量获得加权的组合. 结果(在代码中为attn_applied)[2] 应该包含关于输入序列的特定部分的信息, 从而帮助解码器选择正确的输出单词.

PYf.png

使用解码器的输入隐藏状态作为输入,利用另一个前馈层 attan计算注意力权重, 由于训练数据中有各种大小的句子,为了实际创建和训练此层, 我们必须选择最大长度的句子(输入长度,用于编码器输出),以适用于此层. 最大长度的句子将使用所有注意力权重,而较短的句子只使用前几个.

attention-decoder-network.png

  • “Teacher forcing” 是将实际目标输出用作每个下一个输入的概念
  • 参考
  1. https://blog.csdn.net/Jerr__y/article/details/53749693
  2. http://pytorch.apachecn.org/cn/tutorials/intermediate/seq2seq_translation_tutorial.html
  3. https://arxiv.org/abs/1409.3215
  4. https://arxiv.org/abs/1409.0473
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容

  • 近日,谷歌官方在 Github开放了一份神经机器翻译教程,该教程从基本概念实现开始,首先搭建了一个简单的NMT模型...
    MiracleJQ阅读 6,361评论 1 11
  • 9. 循环神经网络 场景描述 循环神经网络(Recurrent Neural Network)是一种主流的深度学习...
    _龙雀阅读 2,910评论 0 3
  • 1 什么是 Seq2Seq ? Seq2Seq 是一个 Encoder-Decoder 结构的神经网络,它的输入是...
    DejavuMoments阅读 18,599评论 0 11
  • 真正的努力,是跳出舒适区,带着疼痛感的努力,拥有反脆弱性,才能拥有强韧的生命力,当你没有被生活善待,很有可能是因为...
    茶叶蛋就辣条阅读 241评论 0 0
  • 亲爱的麦麦 今天西安的阳光出奇的好,好久没看到过这么蓝的天了。多想和你在这样灿烂的阳光下一起牵手散步,我想你. 有...
    Tender丶Lea阅读 392评论 0 1