1025. Divisor Game (easy)
除数游戏,我的思路是模拟整个游戏的过程,不断更新N值直到0为止。
def divisorGame(self, N: int) -> bool:
res = 0
while N:
flag = True
for x in range(1,N):
if N % x == 0:
N = N - x
flag = False
res += 1
break
if flag:
break
return True if res % 2 else False
看了discuss后,发现自己傻逼了。。。
每次都是除以1 相当于都是每次N-1,因此规律就可以推出来了。
return N % 2 == 0
1026. Maximum Difference Between Node and Ancestor (Medium)
BFS每次存好最大值和最小值即可。
def maxAncestorDiff(self, root: TreeNode) -> int:
if not root:
return None
Min = Max = root.val
res = 0
queue = [(root,Min,Max)]
while queue:
tmp = []
for node,Min,Max in queue:
res = max(abs(node.val-Min),abs(Max-node.val),res)
Min,Max = min(node.val,Min),max(node.val,Max)
if node.left:
tmp.append((node.left,Min,Max))
if node.right:
tmp.append((node.right,Min,Max))
queue = tmp
return res
1027. Longest Arithmetic Sequence (Medium)
该题暴力O(n^3) c++可以过,python超时TLE。
def longestArithSeqLength(self, A: List[int]) -> int:
#O(n^3) python超时
'''
if len(A) <= 1:
return 0
res = 0
n = len(A)
for i in range(n-2):
for j in range(i+1,n-1):
value = A[j] - A[i]
num = A[j]
s = 2
for k in range(j+1,n):
if A[k] - num == value:
num = A[k]
s += 1
res = max(res,s)
return res
DP动态规划,空间换时间 dp[i][diff] 代表i位置差值为diff的Longest Arithmetic Sequence i>j且i-j之间没有差值为diff的点 则
dp[i][diff] = max(dp[i][diff], 1 + dp[j][diff])
def longestArithSeqLength(self, A: List[int]) -> int:
#O(n^2) DP
n = len(A)
if n <= 2:
return n
res = 1
dp = [collections.defaultdict(int) for _ in range(n)]
for i in range(1, n):
for j in range(i-1,-1,-1):
diff = A[i] - A[j]
dp[i][diff] = max(dp[i][diff], 1 + dp[j][diff])
res = max(res, dp[i][diff])
return res+1
1028. Recover a Tree From Preorder Traversal (Hard)
前序遍历,根据特点 按顺序会一开始遍历到最左下边的叶子节点,没做出来,看了下discuss mark一下。
def recoverFromPreorder(self, S: str) -> TreeNode:
stack, i = [], 0
while i < len(S):
level, value = 0, ""
while i < len(S) and S[i] == "-": #记录当前节点深度
level, i = level + 1, i + 1
while i < len(S) and S[i] != "-": #记录当前节点值value
value, i = value + S[i], i + 1
while len(stack) > level:
stack.pop()
node = TreeNode(int(value))
if stack and not stack[-1].left:
stack[-1].left = node
elif stack and not stack[-1].right:
stack[-1].right = node
stack.append(node)
return stack[0]