Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
For example:
Given the below binary tree,
1
/ \
2 3
return 6
一刷
题解:
题目的意思是, maxPath: 从树中任意到任意点的最大路径,这条路径至少包含一个点。
方法:求出某个branch的sum, 并且在过程中不断利用 maxValue = Math.max(maxValue, left+right+root.val);
来更新sum
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
int maxValue;
public int maxPathSum(TreeNode root) {
maxValue = Integer.MIN_VALUE;
maxPathDown(root);
return maxValue;
}
private int maxPathDown(TreeNode root){
if(root==null) return 0;
int left = Math.max(0, maxPathDown(root.left));
int right = Math.max(0, maxPathDown(root.right));
maxValue = Math.max(maxValue, left+right+root.val);
return Math.max(left, right) + root.val;
}
}
二刷
思路同上,注意,如果要pop到上一层,只能选一个branch
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private int maxVal = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
if(root == null) return 0;
pathSum(root);
return maxVal;
}
public int pathSum(TreeNode root) {
if(root == null) return 0;
int left = Math.max(0, pathSum(root.left));
int right = Math.max(0, pathSum(root.right));
maxVal = Math.max(maxVal, right+left+root.val);
return Math.max(left, right) + root.val;
}
}
三刷
由于是求任意点到任意点的最大值,于是需要在DFS中更新maxVal
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
int maxVal = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
if(root == null) return 0;
pathSum(root);
return maxVal;
}
public int pathSum(TreeNode root){
if(root == null) return 0;
int left = Math.max(0, pathSum(root.left));//0 discard the branch
int right = Math.max(0, pathSum(root.right));
maxVal = Math.max(maxVal, left+right+root.val);
return Math.max(left, right) + root.val;
}
}