机器学习资源

来自:龙心尘 - CSDN博客

作者: 龙心尘 && 寒小阳

时间:2016年2月

出处:http://blog.csdn.net/longxinchen_ml/article/details/50749614

http://blog.csdn.net/han_xiaoyang/article/details/50759472


4.1 入门资源

首先coursera(https://www.coursera.org/)是一个非常好的学习网站,集中了全球的精品课程。上述知识学习的过程都可以在上面找到合适的课程。也有很多其他的课程网站,这里我们就需要学习的数学和机器学习算法推荐一些课程(有一些课程有中文字幕,有一些只有英文字幕,有一些甚至没有字幕,大家根据自己的情况调整,如果不习惯英文,基础部分有很多国内的课程也非常优质):


微积分相关

Calculus: Single Variable (https://www.coursera.org/learn/single-variable-calculus)

Multivariable Calculus(http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/)


线性代数

Linear Algebra(http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/)


概率统计

Introduction to Statistics: Descriptive Statistics(https://www.edx.org/course/introduction-statistics-descriptive-uc-berkeleyx-stat2-1x)

Probabilistic Systems Analysis and Applied Probability(http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/)


编程语言

Programming for Everybody:Python(https://www.coursera.org/learn/python)

DataCamp: Learn R with R tutorials and coding challenges:R(https://www.datacamp.com/)


机器学习方法

Statistical Learning(R) (https://lagunita.stanford.edu/courses/HumanitiesandScience/StatLearning/Winter2015/about)

machine learning(https://www.coursera.org/learn/machine-learning):强烈推荐,Andrew Ng老师的课程

机器学习基石(https://www.coursera.org/course/ntumlone)

机器学习技术(https://www.coursera.org/course/ntumltwo):林轩田老师的课相对更有深度一些,把作业做完会对提升对机器学习的认识。

自然语言处理(https://class.coursera.org/nlp/lecture):斯坦福大学课程


日常阅读的资源

@爱可可-爱生活的微博(http://weibo.com/fly51fly?from=myfollow_all)

机器学习日报的邮件订阅(http://ml.memect.com/)等。


4.2 进阶资源

有源代码的教程

scikit-learn(http://scikit-learn.org/stable/auto_examples/index.html)中各个算法的例子

《机器学习实战》 有中文版,并附有python源代码。

《The Elements of Statistical Learning (豆瓣)》(http://book.douban.com/subject/3294335/) 这本书有对应的中文版:《统计学习基础 (豆瓣)》(http://book.douban.com/subject/1152126/)。书中配有R包。可以参照着代码学习算法。网盘中有中文版。

《Natural Language Processing with Python (豆瓣)》(http://book.douban.com/subject/3696989/) NLP 经典,其实主要是讲 python的NLTK 这个包。网盘中有中文版。

《Neural Networks and Deep Learning》(http://neuralnetworksanddeeplearning.com/) Michael Nielsen的神经网络教材,浅显易懂。国内有部分翻译,不全,建议直接看原版。


图书与教材

《数学之美》:入门读起来很不错。

《统计学习方法 (豆瓣) 》(http://book.douban.com/subject/10590856/):李航经典教材。

《Pattern Recognition And Machine Learning (豆瓣) 》(http://book.douban.com/subject/2061116/):经典中教材。

《统计自然语言处理》自然语言处理经典教材

《Applied predictive modeling》:英文版,注重工程实践的机器学习教材

《UFLDL教程》(http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B):神经网络经典教材

《deeplearningbook》(http://www.deeplearningbook.org/):深度学习经典教材。


工具书

《SciPy and NumPy (豆瓣) 》 (http://book.douban.com/subject/10561724/)

《Python for Data Analysis (豆瓣) 》作者是Pandas这个包的作者(http://book.douban.com/subject/10760444/)


其他网络资料

机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总(http://blog.csdn.net/zhongwen7710/article/details/45331915): 作者太给力,量大干货多,有兴趣的同学可以看看,博主至今只看了一小部分。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容