机器学习入门(2)--无监督学习

申明:此文章内容来自于 Doctor AndrewNG的视频,经过编辑而成

定义

监督学习中的每一个样本已经被清楚地告知了什么是所谓的正确答案。在非监督学中,我们的现有数据中并没有正确答案,我们有的只是特征,因而非监督学习要解决问题是发现这些数据是否可以分为不同的组。

直白一点,在无监督学习中 我们只有一个数据集 没人告诉我们该怎么做 我们也不知道 每个数据点究竟是什么意思 相反 它只告诉我们 现在有一个数据集 你能在其中找到某种结构吗? 我不知道这个数据是什么东东 我不知道里面都有些什么类型 叫什么名字 我甚至不知道都有哪些类型 但是 请问你可以自动的找到这些数据中的类型吗? 然后自动的 按得到的类型把这些个体分类对于给定的数据集 无监督学习算法可能判定该数据集包含两个不同的聚类,如下图:

无监督学习的无差别数据分类示意图

例子:鸡尾酒会问题

一个宴会有一屋子的人 大家都坐在一起 而且在同时说话 有许多声音混杂在一起 因为每个人都是在同一时间说话的 在这种情况下你很难听清楚你面前的人说的话。命题是,如果使用一些麦克风录下房间中的声音,如何利用非监督学习算法来识别房间中某一个人所说的话。为简化问题,假设两个人在讲话,准备好了两个麦克风。因为这两个麦克风距离这两个人的距离是不同的,每个麦克风都记录下了来自两个人的声音的不同组合利用两个麦克风录音,如下图。也许Speaker#1的声音 在第一个麦克风里的声音会响一点 也许Speaker#2的声音 在第二个麦克风里会比较响一些 因为2个麦克风 的位置相对于 2个说话者的位置是不同的 但每个麦克风都会录到 来自两个说话者的重叠部分的声音。

鸡尾酒会简化模型

所以 你可以看到 像这样的无监督学习算法 也许你想问 要实现这样的算法 很复杂吧? 看起来 为了 构建这个应用程序 做这个音频处理 似乎需要写好多代码啊 或者需要链接到 一堆处理音频的Java库 貌似需要一个 非常复杂的程序 分离出音频等。实际上使用Octave只需要一行代码就可以了,如下: [W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容