机器学习入坑指南(五):逻辑回归

一、逻辑回归简介

逻辑回归用于解决“二分类”问题,比如判断明天是晴是雨,判断一封邮件是否是垃圾邮件,判断肿瘤是否是恶性的等等。

让我们举个例子来说明为什么这类问题适合用逻辑回归而不是线性回归来解决。

假如我们想用肿瘤的大小判断它是否为恶性,根据样本,得到如下的线性回归模型:

看起来这条线拟合地并不是很令人满意,但似乎还是能够解决问题的,我们把输出的中值作为阈值,就可以得到正确的分类结果。

但如果在右侧再加入一个样本,直线会发生以下改变:

很明显出现了矛盾。这个时候,假如我们用于预测的模型长下面这样:

好像问题就迎刃而解了呢!那么什么函数长这样呢?经过一些科学的设想与推导(参考「阿拉丁吃米粉的文章 - 逻辑回归的简单解释」),我们发现 Sigmoid 函数,即

S(x) = \frac{1}{1 + e^{-\theta x}}

非常符合这个特性,而且与我们需要解决的问题的思路——通过概率来判断分类的情况相统一。

接下来,问题变成了求 \theta 的值,与线性回归一样,我们可以找出损失函数,再使用梯度下降法(参考「逻辑回归详解」「如何理解梯度下降法」)来求得 \theta

对有多元输入的情况,则需要求出 \theta^T

二、Python 代码实现

示例数据地址:GitHub - Avik-Jain/100-Days-Of-ML-Code/datasets

1 数据预处理

# 导入库
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# 导入数据
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# 分割
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# 特征缩放
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

2 逻辑回归模型

# 拟合逻辑回归模型
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)

3 预测与评价

这里我们使用“混淆矩阵”来评估预测的结果。混淆矩阵就是将预测的结果与测试集中实际的结果进行对比,比如矩阵

\begin{bmatrix}12 & 1\\ 2 & 14 \end{bmatrix}

是指预测为第 1 类,实际也为第 1 类的结果有 12 个,预测为第 2 类,实际为第 1 类的结果有 1个;

预测为第 1 类,实际为第 2 类的有 2 个,预测为第 2 类,实际也为第 2 类的有14 个。

# 使用测试集预测
y_pred = classifier.predict(X_test)
# 构建混淆矩阵
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

可以看出,实际应用时使用的代码非常简单。但是我们只有理解了算法本身,才能更好地利用它。

欢迎关注 Evan 的博客

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容