深度学习之评估标准(F1)


一、评估标准

image.png

截图来源:还是强大的wiki.

二、code

  • accuracy,描述预测值和真实情况的一致性。对于不平衡数据,假如大类占比98%,且模型把结果都判断为大类,accuracy=大类占比98%,会很高,然而结果没用。
  • 对于不平衡数据,偏好f1.
  1. 使用TensorFlow方式实现。
def tf_confusion_metrics(model, actual_classes, session, feed_dict):
    predictions = tf.argmax(model, 1)
    actuals = tf.argmax(actual_classes, 1)

    ones_like_actuals = tf.ones_like(actuals)  # tf.ones_like: A `Tensor` with all elements set to 1.
    zeros_like_actuals = tf.zeros_like(actuals)
    ones_like_predictions = tf.ones_like(predictions)
    zeros_like_predictions = tf.zeros_like(predictions)

    # true positive 猜测和真实一致
    tp_op = tf.reduce_sum(                               # tf.reduce_sum,统计1的个数
    tf.cast(                                             # tf.cast:  Casts a tensor to a new type.把true变回1
      tf.logical_and(                                    # tf.logical_and: A `Tensor` of type `bool`.  把预测的true和实际的true取且操作
        tf.equal(actuals, ones_like_actuals),            # tf.equal:A `Tensor` of type `bool`.其实就是把1变成TRUE.
        tf.equal(predictions, ones_like_predictions)
      ), 
      "float"
    )
    )

    # true negative 猜测和真实一致
    tn_op = tf.reduce_sum(
    tf.cast(
      tf.logical_and(
        tf.equal(actuals, zeros_like_actuals), 
        tf.equal(predictions, zeros_like_predictions)
      ), 
      "float"
    )
    )

    # false positive 实际是0,猜测是1
    fp_op = tf.reduce_sum(
    tf.cast(
      tf.logical_and(
        tf.equal(actuals, zeros_like_actuals), 
        tf.equal(predictions, ones_like_predictions)
      ), 
      "float"
    )
    )

    # false negative 实际是1,猜测是0
    fn_op = tf.reduce_sum(
    tf.cast(
      tf.logical_and(
        tf.equal(actuals, ones_like_actuals), 
        tf.equal(predictions, zeros_like_predictions)
      ), 
      "float"
    )
    )

    tp, tn, fp, fn = \
    session.run(
      [tp_op, tn_op, fp_op, fn_op], 
      feed_dict
    )

    with tf.name_scope("confusion_matrix"):
        with tf.name_scope("precision"):
            if((float(tp) + float(fp)) == 0):
                precision = 0
            else:
                precision = float(tp)/(float(tp) + float(fp))
            tf.summary.scalar("Precision",precision)
            
        with tf.name_scope("recall"):
            if((float(tp) + float(fn)) ==0):
                recall = 0
            else:
                recall = float(tp) / (float(tp) + float(fn))
            tf.summary.scalar("Recall",recall)

        with tf.name_scope("f1_score"):
            if((precision + recall) ==0):
                f1_score = 0
            else:   
                f1_score = (2 * (precision * recall)) / (precision + recall)
            tf.summary.scalar("F1_score",f1_score)
            
        with tf.name_scope("accuracy"):
            accuracy = (float(tp) + float(tn))  /  (float(tp) + float(fp) + float(fn) + float(tn))
            tf.summary.scalar("Accuracy",accuracy)

    print ('F1 Score = ', f1_score, ', Precision = ', precision,', Recall = ', recall, ', Accuracy = ', accuracy)
  1. 使用sklearn实现
import sklearn as sk
import numpy as np
from sklearn.metrics import confusion_matrix

# 打印所有的scores参数,包括precision、recall、f1等等
    # y_pred_score,神经网络的预测结果,经过softmax,type: <class 'numpy.ndarray'> 
    # y_true_onehot_score,神经网络的true值输入,是one-hot编码后的type: <class 'numpy.ndarray'> 
def scores_all(y_pred_onehot_score, y_true_onehot_score):

    y_pred_score = np.argmax(y_pred_onehot_score, axis = 1) # 反one-hot编码
    y_true_score = np.argmax(y_true_onehot_score, axis = 1) # 反one-hot编码

#     print("precision:",sk.metrics.precision_score(y_true_score,y_pred_score), \
#           "recall:",sk.metrics.recall_score(y_true_score,y_pred_score), \
#           "f1:",sk.metrics.f1_score(y_true_score,y_pred_score))

    print("f1:",sk.metrics.f1_score(y_true_score,y_pred_score))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容