题目描述
https://leetcode.com/problems/number-of-good-pairs/
Given an array of integers nums.
A pair (i,j) is called good if nums[i] == nums[j] and i < j.
Return the number of good pairs.
Example 1:
Input: nums = [1,2,3,1,1,3]
Output: 4
Explanation: There are 4 good pairs (0,3), (0,4), (3,4), (2,5) 0-indexed.
Example 2:
Input: nums = [1,1,1,1]
Output: 6
Explanation: Each pair in the array are good.
Example 3:
Input: nums = [1,2,3]
Output: 0
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
博主第一次提交的代码
博主脑子也不太灵活,直观的思考就是使用排列组合的方式,假如数字7有n个重复的,那么n从中取出任意2个无序的组合可能的种类就是
代码写出来了,但是提交后值算错了,原来是在factorial函数中,result*=i这一步整形溢出了
class Solution {
public int numIdenticalPairs(int[] nums) {
Map<Integer,Integer> cache = new HashMap<>();
for(int eachInt: nums){
if(cache.get(eachInt) == null){
int count = 1;
cache.put(eachInt,count);
}else{
int count = cache.get(eachInt);
cache.put(eachInt,++count);
}
}
int result = 0;
for(int eachValue:cache.values()){
if( eachValue > 1){
result += factorial(eachValue)/(2* factorial(eachValue-2));
}
}
return result;
}
public int factorial(int n){
if( n == 0){
return 1;
}
int result = 1;
for(int i=1; i<=n; i++){
result*=i;
}
return result;
}
}
修复一下整形溢出的问题,把阶乘公式改成long类型,修复完之后依然溢出,那么就得看看别人优秀的解法了
public static long factorial(int n){
if( n == 0){
return 1;
}
long result = 1;
for(int i=1; i<=n; i++){
result*=i;
}
return result;
}
他人优秀的代码
解法一
这个解法也是基于排列组合公式的一个等价公式,并且这段代码避免了重复的乘法,也就不会产生一个值特别大的数字,不会产生整形溢出的问题
public int numIdenticalPairs(int[] A) {
int res = 0, count[] = new int[101];
for (int a: A) {
res += count[a]++;
}
return res;
}