R语言机器学习与临床预测模型26--综合判别改善指数

本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程

R小盐准备介绍R语言机器学习与预测模型的学习笔记

你想要的R语言学习资料都在这里, 快来收藏关注【科研私家菜】


01 什么是综合判别改善指数?

综合判别改善指数(Integrated Discrimination Improvement, IDI)。这个指标也用于判断预测模型改善情况,与上一讲的净重新分类指数(NRI)有类似也有不同。
IDI是由Pencina等人于2008年提出的一个非常新的判别指标。由于它考虑了不同切点的情况,可以用来反映模型的整体改善状况,在一定程度上补齐了NRI的短板。同时,虽然AUC也考虑到了不同切点,但是AUC的改善情况在临床中不易解释,IDI也因此弥补了AUC的缺陷,可以形象地展示研究对象被准确重新判别的比例。
因此,当我们在进行2个疾病模型比较,或者2个指标诊断效能比较时,除了传统的ROC曲线及其AUC,也可以同时给出NRI和IDI,更加全面多层次的展示模型的改善情况。

02 IDI计算公式

IDI的计算其实也比较简单,它反映的是两个模型预测概率差距上的变化,因此是基于疾病模型对每个个体的预测概率计算所得。它的计算方法为:



其中Pnew,events、Pold,events表示在患者组中,新模型和旧模型对于每个个体预测疾病发生概率的平均值,两者相减表示预测概率提高的变化量,对于患者来说,预测患病的概率越高,模型越准确,因此差值越大则提示新模型越好。

在模型比较时,将两部分相减即可得到IDI,总体来说IDI越大,则提示新模型预测能力越好。与NRI类似,若IDI>0,则为正改善,说明新模型比旧模型的预测能力有所改善,若IDI<0,则为负改善,新模型预测能力下降,若IDI=0,则认为新模型没有改善。

我们可以通过计算Z统计量,来判断IDI与0相比是否具有统计学显著性,统计量Z近似服从正态分布,公式如下:


02 二分类变量R语言实现

示例数据来自于survival包里自带的一份梅奥诊所的数据,记录了418位患者的临床指标与原发性胆汁性肝硬化(PBC)的关系。其中前312个患者来自于RCT研究,其他患者来自于队列研究。我们用前312例患者的数据来预测2000天时间点上是否发生死亡。此处需要说明的是原始数据是一个生存数据,我们重新定义一个二分类的结局,死亡or 存活,不考虑时间因素。先载入这份数据,如图4.所示。这个表中的结局变量是status,0 = 截尾(删失),1 = 接受肝移植,2 = 死亡。胆我们的研究目的“死亡与否”是个二分类变量,所以要做变量变换。再看time一栏,有的不够2000天,这些样本要么是没到2000天就死亡了,要么是删失了。我们要删掉2000天内删失的数据。

##hereconsider pbc dataset in survival package as an example

library(survival)

dat=pbc[1:312,]

dat$sex=ifelse(dat$sex==''f'',1,0)

##subjectscensored before 2000 days are excluded

dat=dat[dat$time>2000|(dat$time<2000&dat$status==2),]

##predcitingthe event of ''death'' before 2000 days

event=ifelse(dat$time<2000&dat$status==2,1,0)

##standardprediction model: age, bilirubin, and albumin

z.std=as.matrix(subset(dat,select=c(age,bili,albumin)))

##newprediction model: age, bilirubin, albumin, and protime

z.new=as.matrix(subset(dat,select=c(age,bili,albumin,protime)))

##glmfit (logistic model)

mstd=glm(event~.,binomial(logit),data.frame(event,z.std),x=TRUE)

mnew=glm(event~.,binomial(logit),data.frame(event,z.new),x=TRUE)

##UsingPredictABEL package

library(PredictABEL)

pstd<-mstd$fitted.values

pnew<-mnew$fitted.values

##用cbind函数把前面定义的event变量加入数据集,并定义为dat_new

dat_new=cbind(dat,event)

##计算NRI,同时报告了IDI,IDI计算与cutoff点设置无关。

##cOutcome指定结局变量的列序号

##predrisk1,predrisk2为新旧logistic回归模型

reclassification(data=dat_new,cOutcome=21,

                 predrisk1=pstd,predrisk2=pnew,

                 cutoff=c(0,0.2,0.4,1))
# 计算的IDI为0.44%,说明新模型较旧模型预测能力仅改善0.44%。

03 生存资料模型

生存资料的NRI与分类结局的NRI差别在于前者需要构建Cox回归模型,所以我们首先构建新旧Cox回归模型,计算这两个模型的NRI.

##here consider pbc dataset in survival package as an example

library(survival)

dat=pbc[1:312,]

dat$time=as.numeric(dat$time)

##定义生存结局

dat$status=ifelse(dat$status==2,1, 0)

##定义时间点

t0=365*5

##基础回归模型

indata0=as.matrix(subset(dat,select=c(time,status,age,bili,albumin)))

##增加1个预测变量新模型

indata1=as.matrix(subset(dat,select=c(time,status,age,bili,albumin,protime)))

##旧模型中预测变量矩阵

covs0<-as.matrix(indata0[,c(-1,-2)])

关注R小盐,关注科研私家菜(VX_GZH: SciPrivate),有问题请联系R小盐。让我们一起来学习 R语言机器学习与临床预测模型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容