信号完整性基础-深入浅出说瞬态阻抗与特性阻抗

阻抗的均匀稳定,对信号的传输至关重要,所以,本文聊一聊阻抗。

瞬态阻抗(Transient Impedance):

瞬态阻抗是指在传输线上的瞬时电阻抗,通常随着时间的变化而变化。它描述了信号在传输线上传播时的阻抗变化情况。

瞬态阻抗通常用于描述信号的上升(rise)和下降(fall)边缘,以及它们与传输线之间的相互作用。

特性阻抗(Characteristic Impedance):

特性阻抗是指传输线或电缆本身的固有阻抗,通常是一个恒定的值。它与传输线的几何形状、介质特性以及信号传播速度等因素有关。

特性阻抗在信号完整性中起到重要作用,因为它决定了信号在传输线上的反射和阻抗匹配情况。

         

瞬态阻抗

瞬态阻抗是指信号在传输线上传播时,信号感受到的瞬态阻抗与单位长度电容和材料的介电常数有关。

举例:

瞬态阻抗可以用来描述信号在传输线上的传输特性,如果信号在传输线上的每一点感受到的阻抗都相同,那么我们就说传输线阻抗连续;反之,如果信号在传输线上感受到了阻抗变化,则说明传输线阻抗不连续。

当信号在传输线上传播时,信号感受到的瞬态阻抗与单位长度电容和材料的介电常数有关,可表示为:

这个公式的推导过程如

而电流的推导可以由以下式子求得:

如果PCB上线条的厚度和宽度不变,并且走线和返回平面间距离不变,那么信号感受到的瞬态阻抗就不变,传输线是均匀的。对于均匀传输线,恒定的瞬态阻抗说明了传输线的特性,称为特性阻抗

2. 特性阻抗

对于均匀传输线,当信号在上面传播时,在任何一处受到的瞬态阻抗都是相同的。在瞬态阻抗不变时,我们将其称为特性阻抗。

传输线的特性阻抗Z0定义为线上任意点的电压和电流的比值,即Z0=V/I. 由电报方程可以推导出阻抗的经典计算公式:

如果PCB上线条的厚度增大或者宽度增加,单位长度电容增加,特性阻抗就变小。同样,走线和返回平面间距离减小,电容增大,特性阻抗也减小。其中,R、L、G、C分别表示单位长度的电阻、电感、电导和电容。通常,因为R和G都比其他项要小得多而忽略不计,特征阻抗近似为

特性阻抗可以用来描述信号在传输线上传输时的传输特性,如果传输线的特性阻抗与信号的特性阻抗相等,则信号在传输线上的传输损耗最小,传输效率最高。

重要推导之一:50 欧姆阻抗的计算由来

由特性阻抗的公式,可以看出只要传输线的横截面和材料特性这两个参数保持不变,信号受到的瞬态阻抗就是一个常数。由于信号的的速度取决于材料特性,所以,可以得出传输线单位长度电容和瞬态阻抗的关系。例如,若介电常数为4,单位长度电容为3.3pf/in,则传输线的瞬态阻抗为,

重要推导之二:自由空间的特性阻抗

一个很重要的特性阻抗就是自由空间的特性阻抗,也叫自由空间的波阻抗,在EMC中非常重要。自由空间特性阻抗为 。

重要推导之三:单位长度电容与单位长度电感

FR4板材的PCB板上, 特性阻抗传输线另一个特性是:

单位长度电容=3.3pF/in

单位长度电感=8.3nH/i

解这些特殊的特性阻抗,对于设计电路板有重要的参考意义,能让我们在制作电路前有个直觉的认识。

类比分析

为了深入浅出地理解瞬态阻抗与特性阻抗之间的关系,可以将其类比为水管系统:

想象一下,你有一根水管,水要从一端流向另一端。这根水管就好比传输线路,而水就好比电流。我们将用这个类比来说明瞬态阻抗和特性阻抗的概念:

特性阻抗就像水管本身的材质和大小。不同类型的水管(比如,铜管和塑料管)有不同的特性阻抗。这些特性阻抗决定了水在管内流动时的速度和阻力。

当你将两根不同特性阻抗的水管连接在一起时,水会在它们之间发生变化。如果特性阻抗匹配得好,水就能够平稳地从一根水管流向另一根,不会发生反射或损失。

特性阻抗就像水管的内径和材质,它们是水在管内流动时的固有属性,不随时间变化。

现在,想象你在水管中快速地开关一个阀门,让水流开始或停止。这个瞬间,水在管内会发生瞬态变化。这种瞬时变化就好比瞬态阻抗。

瞬态阻抗描述的是在水流开始或停止时,水在管内的急剧变化。这会导致水流的快速上升或下降,就像电信号的上升或下降边沿一样。

正如水流的急剧变化会受到管道内部和外部条件的影响,电信号的瞬态阻抗也受到传输线路和连接器等因素的影响。

二者的关系:

在这个类比中,特性阻抗类似于水管的属性,而瞬态阻抗类似于水流的瞬时变化。特性阻抗决定了电信号在传输线路中的传播速度和反射情况,就像水管的大小和材质影响水的流动一样。而瞬态阻抗则描述了电信号的变化速度,就像水流在阀门开关时会急剧变化一样。

在高速数字系统中,了解和管理特性阻抗和瞬态阻抗对于确保信号完整性至关重要,就像在水管系统中管理水流一样。匹配特性阻抗和控制瞬态阻抗可以减少信号的反射和失真,从而提高系统性能。

         

         

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容