k近邻算法采用测量不同特征值之间的距离方法进行分类。
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。适用数据范围:数值型和标称行。
工作原理:存在一个样本数据集合,也成训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
上面就是归一化,不归一化,值大的相当于权重就大,而权重的大小是应该我们去添加的,不是由值的大小来
对于归一化,我们一般有三种处理方法。
1、[(原值-最小值)/(最大值-最小值)]*(新的最大值-新的最小值)+新的最小值。
2、(原值-均值)/标准差
3、小数的规范化,就是移动小数点位,归化到0-1之间