import os
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# 下载训练数据集
train_dataset = datasets.MNIST(root='data',
train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
# 下载测试数据集
test_dataset = datasets.MNIST(root='data',
train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self,x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
x = self.fc(x)
return x
model = Net()
model.load_state_dict(torch.load(r"models\net3.pth"))
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练数据集
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
# inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
# 计算损失函数
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
# 更新
optimizer.step()
# 计算总的损失值
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d]loss:%.3f'%(epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss = 0.0
# 测试集
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, target = data
# images = images.to(device)
# target = target.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('正确率为:%.2f %%' % (100 * correct / total))
# 保存模型
def save_model():
torch.save(obj=model.state_dict(), f=r"models\net3.pth")
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
if epoch == 9:
save_model()
第三次作业
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 在山下种的豆苗草很多,清晨拿着铲子去除草,背着锄头带着月亮走在草木茂盛且狭窄的小路上,水打湿了衣服,没事,笑着回家...
- 小说《借条》讲述了“我”与昔日邻居陆大姐,以及“我”和阿康之间因借条的开与不开而产生隔阂互相疏远的故事。借条的开...
- 1、老婆打电话问你:“今天能不能早点回去”请问如何用制约的方式进行回答? 老婆,我也好希望今天能早点回去陪你啊,我...