如何高效维持网络长连接:手把手教你实现 自适应的心跳保活机制


前言

  • 当实现具备实时性需求时,我们一般会选择长连接的通信方式
  • 而在实现长连接方式时,存在很多性能问题,如 长连接保活
  • 今天,我将 手把手教大家实现自适应的心跳保活机制,从而能高效维持长连接

目录

示意图

1. 长连接 介绍

1.1 简介

示意图

1.2 作用

通过 长时间保持双方连接,从而:

  • 提高通信速度
  • 确保实时性
  • 避免短时间内重复连接所造成的信道资源 & 网络资源的浪费

1.3 长连接 与 短连接的区别

示意图

2. 长连接断开的原因

  • 从上节可知,在长连接的情况下,双方的所有通信 都建立在1条长连接上(1次TCP连接);所以,长连接 需要 持续保持双方连接 才可使得双方持续通信

  • 可是,长连接会存在断开的情况,而 断开原因 主要是:

    1. 长连接所在进程被杀死
    2. NAT超时
    3. 网络状态发生变化
    4. 其他不可抗因素(网络状态差、DHCP的租期等等 )

下面,我将对每种原因进行分析

原因1:进程被杀死

当进程被杀死后,长连接也会随之断开

原因2:NAT 超时(重点关注)

  • NAT超时现象如下
示意图
  • 各运营商 & 地区的 NAT超时时间如下
示意图
  • 特别注意:排除其他外因(网络切换、NAT超时、人为原因),TCP长连接在双方都不断开连接的情况上,本质上是不会自动中断的
  1. 即,不需要心跳包来维持
  2. 验证:让2台电脑连上同1个Wifi(其中1台做服务器, 另1台做客户端连接服务器(无设置KeepAlive);只要电脑、路由器不断网断电,那么,2台电脑的长连接是不会自动中断的。

原因3:网络状态发生变化

当移动客户端网络状态发生变化时(如移动网络 & Wifi切换、断开、重连),也会使长连接断开

原因4:其他不可抗因素

如网络状态差、DHCP的租期到期等等,都会使得长连接发生 偶然的断开

DHCP的租期到期:对于 Android系统, DHCP到了租期后不会主动续约 & 继续使用过期IP,,从而导致长连接 断开


3. 高效维持长连接的解决方案

  • 在了解长连接断开原因后,针对对应原因,此处给出 高效维持长连接的解决方案
示意图
  • 为此,若需有效维持长连接,则需要做到
示意图

其实,说得简单点:高效维持长连接的关键在于

  • 保活:处于连接状态时尽量不要断
  • 断线重连:断了之后继续重连回来

解决方案1:进程保活

整体概括如下:


示意图

解决方案2:心跳保活机制

这是本文的重点,下节开始会详细解析

解决方案3:断线重连机制

  • 原理
    检测网络状态变化 & 判断连接的有效性
  • 具体实现
    前者请参考文章:Android:检测网络状态&监听网络变化;后者主要存在于心跳保活机制,所以下面会在心跳保活机制中一起讲解。

4. 心跳保活机制简介

  • 心跳保活机制的整体介绍如下
示意图
  • 注:很多人容易混淆 心跳机制 & 轮询机制,此处给出二者区别
示意图

5. 主流心跳机制分析 & 对比

对国、内外主流的移动IM产品(WhatsAppLine、微信)进行了心跳机制的简单分析 & 对比,具体请看下图

示意图

6. 心跳机制方案 总体设计

下面,将根据市面上主流的心跳机制,设计 一套心跳机制方案

6.1 基本流程

示意图

6.2 设计要点

  • 对于心跳机制方案设计的主要考虑因素 = 保证消息的实时性 & 耗费设备的资源(网络流量、电量、CPU等等)
  • 从上图可以看出,对于心跳机制方案设计的要点在于
    1. 心跳包的规格(内容 & 大小)
    2. 心跳发送的间隔时间
    3. 断线重连机制 (核心 = 如何 判断长连接的有效性)

在下面的方案设计中,将针对这3个问题给出详细的解决方案。


7. 心跳机制方案 详细设计

7.1 心跳包的规格

为了减少流量 & 提高发送效率,需要精简心跳包的设计

7.1.1 设计原则

主要从心跳包的内容 & 大小入手,设计原则具体如下

示意图

7.1.2 设计方案

心跳包 = 1个携带少量信息 & 大小在10字节内的信息包


7.2 心跳发送的间隔时间

为了 防止NAT超时 & 减少设备资源的消耗(网络流量、电量、CPU等等),心跳发送的间隔时间 是 整个 心跳机制方案设计的重点。

7.2.1 设计原则

心跳发送间隔时间的设计原则如下

示意图

7.2.2 设计方案

a. 最直接 & 常用方案
  • 一般,最直接 & 常用的心跳发送间隔时间设置方案 :每隔估计 x 分钟发送心跳包1次

  • 即 选择 <所有NAT超时时间最短(5分钟)的时间 即可,综合主流移动IM产品,此处建议 x= 4分钟

  • 但是,这种方案存在一些问题:

示意图

下面,我将详细讲解 自适应心跳间隔时间 的设计方案

b. 自适应心跳间隔时间 设计方案
  • 基本流程
示意图
  • 该方案需要解决的有2个核心问题:

1.如何自适应计算心跳间隔 从而使得心跳间隔 接近 当前NAT 超时时间?

答:不断增加心跳间隔时间进行心跳应答测试,直到心跳失败5次后,即可找出最接近 当前NAT 超时时间的心跳间隔时间。具体请看下图:

示意图

注:只有当心跳间隔 接近 NAT 超时时间 时,才能最大化平衡 长连接不中断 & 设备资源消耗最低的问题

2.如何检测 当前网络环境的NAT 超时时间 发生了变化 ?

答:当前发送心跳包成功 的最大间隔时间(即最接近NAT超时时间的心跳间隔) 发送失败5次后,则判断当前网络环境的NAT 超时时间 发生了变化。具体请看下图:

示意图

注:在检测到 NAT 超时时间 发生变化后,重新自适应计算心跳间隔 从而使得心跳间隔 接近 NAT 超时时间

  • 总结:统筹2个核心问题,总结出自适应心跳间隔时间 设计方案为下图
示意图

7.3 断线重连机制

该机制的核心在于, 如何 判断长连接的有效性

即,什么情况下视为 长连接 断线?

7.3.1 设计原则

  • 判断长连接是否有效的准则 = 服务器是否返回心跳应答
  • 此处需要 分清:长连接 存活 & 有效 状态的区别:
示意图

7.3.2 设计方案

  • 基本思路
    若连续5次发送心跳后,服务器都无心跳应答,则视为长连接无效

通过计数计算

  • 判断流程
示意图

7.3.3 网上流传的方案

在网上流传着一些用于判断长连接是否有效的方案,具体介绍如下

示意图

至此,关于心跳保活机制已经讲解完毕。

7.4 总结

  • 设计方案
示意图
  • 流程设计

其中,标识 “灰色” 的判断流程参考上文描述

示意图

8. 优化 & 完善

  • 上面的方案依然会存在缺陷,从而导致 长连接断开

如,长连接本身不可用(此时重连多少次也没用)

  • 下面,将优化 & 完善上述方案,从而保证 客户端与服务器依然保持着通信状态

  • 优化点

    1. 确保当前网络的有效性 & 稳定性再开始长连接
    2. 自适应计算心跳包间隔时间的时机

8.1 确保当前网络的有效性 & 稳定性再开始长连接

  • 问题描述
示意图
  • 解决方案
示意图
  • 加入到原有 心跳保活机制 主流程


    示意图

8.2 自适应计算心跳包间隔时间的时机

  • 问题描述
示意图
  • 方案设计
示意图
  • 加入到原有 心跳保活机制 主流程
示意图

8.3 总结

示意图

9. 额外说明:TCP 协议自带 KeepAlive 的机制 是否 可替代心跳机制

很多人认为,TCP 协议自身就有KeepAlive机制,为何基于它的通讯链接,仍需 在应用层实现额外的心跳保活机制

9.1 回答

  • 结论:无法替代
  • 原因:TCP KeepAlive机制 的作用 是检测连接的有无(死活),但无法检测连接是否有效。

“连接有效”的定义 = 双方具备发送 & 接收消息的能力

9.2 KeepAlive 机制概述

先来看看KeepAlive 机制 是什么

示意图

9.3 具体原因

KeepAlive 的机制 不可 替代心跳机制 的具体原因如下:

示意图

9.4 特别注意

  1. KeepAlive 机制只是操作系统底层的一个被动机制,不应该被上层应用层使用
  2. 当系统关闭一个由KeepAlive 机制检查出来的死连接时,是不会主动通知上层应用的,只能通过调用相应IO操作的返回值中发现

9.6 结论

KeepAlive机制无法代替心跳机制,需要在应用层 自己实现心跳机制以检测长连接的有效性,从而高效维持长连接


10. 实现方式

  • 关于该心跳保活机制的实现方案,可采用多种方案实现
  • Android端,本人推荐使用 Rxjava,因为:基于事件流的链式调用 的使用方式 使得 复杂方案 实现得更加优雅、逻辑简洁 & 使用简单

RxJava简介如下

示意图

11. 总结

  • 看完本文后,相信在高效维持长连接的需求下,你可以完美地解决了!(具体总结如下)
示意图

请点赞!因为你的鼓励是我写作的最大动力!

相关文章阅读
Android开发:最全面、最易懂的Android屏幕适配解决方案
Android事件分发机制详解:史上最全面、最易懂
Android开发:史上最全的Android消息推送解决方案
Android开发:最全面、最易懂的Webview详解
Android开发:JSON简介及最全面解析方法!
Android四大组件:Service服务史上最全面解析
Android四大组件:BroadcastReceiver史上最全面解析


欢迎关注Carson_Ho的简书!

不定期分享关于安卓开发的干货,追求短、平、快,但却不缺深度

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,585评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,283评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 142,760评论 0 324
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,461评论 1 266
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,280评论 4 357
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,268评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,656评论 3 385
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,322评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,629评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,691评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,445评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,299评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,694评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,982评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,244评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,642评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,829评论 2 335

推荐阅读更多精彩内容

  • 前言 当实现具备实时性需求时,我们一般会选择长连接的通信方式 而在实现长连接方式时,存在很多性能问题,如 长连接保...
    羽裳有涯阅读 6,452评论 1 15
  • 互联网推送服务原理:长连接+心跳机制(MQTT协议)Android推送技术研究Android实现推送方式解决方案a...
    合肥黑阅读 2,971评论 0 12
  • 我搭上了一艘船。 这艘船每天冒着滚滚的浓烟,发着轰隆隆的声响,一直破浪直前。我不知道它驶向哪里,每天,我除了看见太...
    流浪远方的喵阅读 152评论 1 2
  • P70-89 关键词:未激活、900宫格、微梦想清单、复盘、每天专注三小时 1、激活你的人生:作者把学习当成生活的...
    UP柠檬阅读 294评论 1 1
  • NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类...
    JackHCC阅读 2,877评论 0 0