MySQL的binlog日志监听工具对比

canal

定位: 基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql

原理:

canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议
mysql master收到dump请求,开始推送binary log给slave(也就是canal)
canal解析binary log对象(原始为byte流)
官网文档/源码(可谷歌右键翻译,有详细的接入案例):https://github.com/alibaba/canal

网上好的学习链接://www.greatytc.com/p/6299048fad66

//www.greatytc.com/p/6299048fad66

源码结构解析:http://www.tianshouzhi.com/api/tutorials/canal/380

偏日志解析的文章:https://blog.csdn.net/varyall/article/details/79208574

配置文件解析:https://blog.csdn.net/my201110lc/article/details/80765356

架构模型:https://blog.csdn.net/nuaazhaofeng/article/details/80513174

源码启动时序图://www.greatytc.com/p/d7d1b42242f1

parser

整个parser过程大致可分为几步:
Connection获取上一次解析成功的位置(如果第一次启动,则获取初始制定的位置或者是当前数据库的binlog位点)
Connection建立连接,发生BINLOG_DUMP命令
Mysql开始推送Binary Log
接收到的Binary Log通过Binlog parser进行协议解析,补充一些特定信息
传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
存储成功后,定时记录Binary Log位置

sink


说明:

  • 数据过滤:支持通配符的过滤模式,表名,字段内容等
  • 数据路由/分发:解决1:n (1个parser对应多个store的模式)
  • 数据归并:解决n:1 (多个parser对应1个store)
  • 数据加工:在进入store之前进行额外的处理,比如join

Maxwell

官网:http://maxwells-daemon.io/

好的文章:https://blog.csdn.net/wwwdc1012/article/details/88388552

canal 由Java开发,分为服务端和客户端,拥有众多的衍生应用,性能稳定,功能强大;canal 需要自己编写客户端来消费canal解析到的数据。

maxwell相对于canal的优势是使用简单,它直接将数据变更输出为json字符串,不需要再编写客户端。

建议使用maxwell。

Databus

Databus是一种低延迟变化捕获系统,已成为LinkedIn数据处理管道不可或缺的一部分。Databus解决了可靠捕获,流动和处理主要数据更改的基本要求。Databus提供以下功能:

源与消费者之间的隔离
保证按顺序和至少一次交付具有高可用性
从更改流中的任意时间点开始消耗,包括整个数据的完全引导功能。
分区消费
源一致性保存

阿里云的数据传输服务DTS

数据传输服务(Data Transmission Service,简称DTS)是阿里云提供的一种支持 RDBMS(关系型数据库)、NoSQL、OLAP 等多种数据源之间数据交互的数据流服务。DTS提供了数据迁移、实时数据订阅及数据实时同步等多种数据传输能力,可实现不停服数据迁移、数据异地灾备、异地多活(单元化)、跨境数据同步、实时数据仓库、查询报表分流、缓存更新、异步消息通知等多种业务应用场景,助您构建高安全、可扩展、高可用的数据架构。
优势:数据传输(Data Transmission)服务 DTS 支持 RDBMS、NoSQL、OLAP 等多种数据源间的数据传输。它提供了数据迁移、实时数据订阅及数据实时同步等多种数据传输方式。相对于第三方数据流工具,数据传输服务 DTS 提供更丰富多样、高性能、高安全可靠的传输链路,同时它提供了诸多便利功能,极大得方便了传输链路的创建及管理。
个人理解:就是一个消息队列,会给你推送它包装过的sql对象,可以自己做个服务去解析这些sql对象。
阿里文档快速入口:https://help.aliyun.com/product/26590.html

免去部署维护的昂贵使用成本。DTS针对阿里云RDS(在线关系型数据库)、DRDS等产品进行了适配,解决了Binlog日志回收,主备切换、VPC网络切换等场景下的订阅高可用问题。同时,针对RDS进行了针对性的性能优化。出于稳定性、性能及成本的考虑,推荐使用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容