上一节介绍了简单的线性回归,如何在pytorch里面用最小二乘来拟合一些离散的点,这一节我们将开始简单的logistic回归,介绍图像分类问题,使用的数据是手写字体数据集MNIST。
logistic回归
logistic回归简单来说和线性回归是一样的,要做的运算同样是 y = w * x + b,logistic回归简单的是做二分类问题,使用sigmoid函数将所有的正数和负数都变成0-1之间的数,这样就可以用这个数来确定到底属于哪一类,可以简单的认为概率大于0.5即为第二类,小于0.5为第一类。
$y = \frac{1}{1+e^{-x}}$
这就是sigmoid的图形
而我们这里要做的是多分类问题,对于每一个数据,我们输出的维数是分类的总数,比如10分类,我们输出的就是一个10维的向量,然后我们使用另外一个激活函数,softmax
这就是softmax函数作用的机制,其实简单的理解就是确定这10个数每个数对应的概率有多大,因为这10个数有正有负,所以通过指数函数将他们全部变成正数,然后求和,然后这10个数每个数都除以这个和,这样就得到了每个类别的概率。
Code
data
首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。
我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader
首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和shuffle等,默认load进去的图片类型是PIL.Image.open的类型,如果你不知道PIL,简单来说就是一种读取图片的库
torchvision.transforms里面的操作是对导入的图片做处理,比如可以随机取(50, 50)这样的窗框大小,或者随机翻转,或者去中间的(50, 50)的窗框大小部分等等,但是里面必须要用的是transforms.ToTensor(),这可以将PIL的图片类型转换成tensor,这样pytorch才可以对其做处理
torchvision.datasets里面有很多数据类型,里面有官网处理好的数据,比如我们要使用的MNIST数据集,可以通过torchvision.datasets.MNIST()来得到,还有一个常使用的是torchvision.datasets.ImageFolder(),这个可以让我们按文件夹来取图片,和keras里面的flow_from_directory()类似,具体的可以去看看官方文档的介绍。
# 定义超参数
batch_size = 32
learning_rate = 1e-3
num_epoches = 20
# 下载训练集 MNIST 手写数字训练集
train_dataset = datasets.MNIST(root='./data', train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data', train=False,
transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
以上就是我们对图片数据的读取操作
model
之前讲过模型定义的框架,废话不多说,直接上代码
class Logstic_Regression(nn.Module):
def __init__(self, in_dim, n_class):
super(Logstic_Regression, self).__init__()
self.logstic = nn.Linear(in_dim, n_class)
def forward(self, x):
out = self.logstic(x)
out = F.softmax(out)
return out
model = Logstic_Regression(28*28, 10) # 图片大小是28x28
我们需要向这个模型传入参数,第一个参数定义为数据的维度,第二维数是我们分类的数目。
接着我们可以在gpu上跑模型,怎么做呢?
首先可以判断一下你是否能在gpu上跑
torh.cuda.is_available()
如果返回True就说明有gpu支持
接着你只需要一个简单的命令就可以了
model = model.cuda()
或者
model.cuda()
都可以
然后需要定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
这里我们使用的loss是交叉熵,是一种处理分类问题的loss,optimizer我们还是使用随机梯度下降
train
接着就可以开始训练了
for epoch in range(num_epoches):
print('epoch {}'.format(epoch+1))
print('*'*10)
running_loss = 0.0
running_acc = 0.0
for i, data in enumerate(train_loader, 1):
img, label = data
img = img.view(img.size(0), -1) # 将图片展开成 28x28
if use_gpu:
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
# 向前传播
out = model(img)
loss = criterion(out, label)
running_loss += loss.data[0] * label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
running_acc += num_correct.data[0]
# 向后传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
注意我们如果将模型放到了gpu上,相应的我们的Variable也要放到gpu上,也很简单
img = Variable(img).cuda()
label = Variable(label).cuda()
然后可以测试模型,过程与训练类似,只是注意要将模型改成测试模式
model.eval()
这是跑完的结果
具体的结果多久打印一次,如何打印可以自己在for循环里面去设计
这一部分我们就讲解了如何用logistic回归去做一个简单的图片分类问题,知道了如何在gpu上跑模型,下一节我们将介绍如何写简单的卷积神经网络,不了解卷积网络的同学可以先去我的专栏看看之前卷积网络的介绍。
本文代码已经上传到了github上
欢迎查看我的知乎专栏,深度炼丹
欢迎访问我的博客