[python] GIL全局解释器锁

GIL是什么

GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,而CPython是大部分环境下默认的Python执行环境。GIL 全称 gloabl interpreter lock (全局解释器锁) ,官方解释:

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)

这主要是针对cpython解释器来说的,其他解释器不一样。

GIL的影响

GIL遵循的原则:“一个线程运行 Python ,而其他 N 个睡眠或者等待 I/O.”(即保证同一时刻只有一个线程对共享资源进行存取)。

之前看到一直以为有GIL全局锁的的存在,那在多线程中为什么要自己再加锁呢,后来发现想错了,怎么可能会等一个线程结束了才会执行另一个线程呢,那多线程就没有了存在的必要。

# 有了GIL全局锁,线程间访问全局变量还是需要同步
total = 0
def add():
    global total
    for i in range(1000000):
        total += 1

def desc():
    global total
    for i in range(1000000):
        total -= 1

import threading
thread1 = threading.Thread(target=add)
thread2 = threading.Thread(target=desc)

thread1.start()
thread2.start()

thread1.join()
thread2.join()

print(total)

这个例子中,两个线程分别对一个全局变量total进行加和减1000000次,但是结果并不是0!而是每次运行结果都不相同。

造成这个结果的原因是GIL事实上是会释放的,python中有两种多任务处理:

1. 协同式多任务处理:一个线程无论何时开始睡眠或等待网络 I/O,就会释放GIL锁

2. 抢占式多任务处理:如果一个线程不间断地在 Python 2 中运行 1000 字节码指令,或者不间断地在 Python 3 运行15 毫秒,那么它便会放弃 GIL,而其他线程可以运行

这样解释之后感觉GIL没啥影响啊,反正会切换的嘛,那为什么都说由于GIL的存在,导致python的多线程比单线程还慢,按我的理解,在单核CPU下没什么不一样(也有可能有性能损失),但是在多核CPU下问题就大了,不同核心上的线程同一时刻也只能执行一个,所以不能够利用多核CPU的优势,反而在不同核心间切换时会造成资源浪费,反而比单核CPU更慢。

解决办法

1. 多线程比较低效时,可用multiprocess库替代Thread库,即使用多进程而不是多线程,每个进程有自己的独立的GIL,因此也不会出现进程之间的GIL争抢。但这样的话也会带来很多其他问题,比如进程间数据通讯和同步的困难。

2. 多线程也不是这么一无是处,在IO密集型操作时,用多线程还是有效果的,不会比多进程差,甚至会更好。

3. 用其他解析器。像JPython和IronPython这样的解析器由于实现语言的特性,他们不需要GIL的帮助。然而由于用了Java/C#用于解析器实现,他们也失去了利用社区众多C语言模块有用特性的机会。所以这些解析器也因此一直都比较小众。毕竟功能和性能大家在初期都会选择前者。

4. 等待GIL的改进。python社区也在非常努力的不断改进GIL,甚至是尝试去除GIL。并在各个小版本中有了不少的进步。

总结

由于GIL涉及到底层实现,比较复杂,想要完全搞明白还是很困难的。但是只要记住2点:

1. 在IO密集型型操作下,多线程还是可以的。比如在网络通信,time.sleep()延时的时候。

2. 在CPU密集型操作下,多线程性能反而不如单线程,此时只能用多进程。

更多 为什么GIL导致多线程效率低下 的解释可参考以下文章

参考链接

1. 深入理解 GIL:如何写出高性能及线程安全的 Python 代码
2. Python的GIL是什么鬼,多线程性能究竟如何
3. python下同样代码,多核多线程为什么比单核多线程慢很多?
4. Python3高级编程和异步IO并发编程

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容