具体的SVM详解参考https://blog.csdn.net/c406495762/article/details/78072313, 讲的特别详细, 如下代码也是基于该链接中的讲解而实现的
//model.h
#include <iostream>
#include "Eigen/Eigen"
#include<vector>
#include<string>
#include<fstream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<regex>
#include<set>
#include<unordered_map>
#include <assert.h>
#include <random>
#include <python2.7/Python.h>
#include <stdlib.h>
using namespace Eigen;
using std::pair;
using std::vector;
using std::cout;
using std::endl;
using std::ios;
using std::ifstream;
using std::string;
using std::regex;
using std::iterator;
using std::stringstream;
using std::sregex_token_iterator;
using std::set;
using std::istringstream;
using std::istream_iterator;
using std::unordered_map;
using std::make_pair;
using std::begin;
using std::end;
using std::min;
using std::max;
using std::abs;
using _MAT_VEC=pair<MatrixXf,VectorXf>;
using _PARAM=pair<VectorXf,float>;
#define filename "data/sample"
#define C 0.6f
#define Threshold 0.001f
#define Max_iter 40
#define Alpha_threshold 0.00001f
#define RBF_var 1.3
#ifndef DATA_HANDLE_
#define DATA_HANDLE_
inline _MAT_VEC load_data();
inline pair<_MAT_VEC,_MAT_VEC> train_test_split(const _MAT_VEC,float);
_PARAM SMO(const MatrixXf&,const VectorXf&);
inline VectorXf cal_weight(const MatrixXf&,const VectorXf&,const VectorXf&);
VectorXf kernel_RBF(MatrixXf,VectorXf,float);
inline void python_plot(const VectorXf&,float b);
#endif
//model.cpp
#pragma once
#include "model.h"
inline _MAT_VEC load_data(){
ifstream ifile(filename,ios::in);
if(!ifile.is_open()){
cout<<"failed to open: "<<filename<<endl;
}
string line;
vector<vector<float> > tempX;
vector<float> tempY;
while(getline(ifile,line)){
istringstream iss( line );
vector<float> nums{istream_iterator<float>( iss ), std::istream_iterator<float>()};
tempY.push_back(nums[nums.size()-1]);
nums.pop_back();
tempX.push_back(nums);
}
assert(tempX.size()==tempY.size());
int matC=tempX[0].size(),matR=tempX.size();
MatrixXf X(matR,matC);
VectorXf Y(matR);
for(auto row=0;row<matR;++row){
Y[row]=tempY[row];
float *arr=tempX[row].data();
X.row(row)=Map<VectorXf>(arr,matC);
}
return make_pair(X,Y);
}
inline pair<_MAT_VEC,_MAT_VEC> train_test_split(const _MAT_VEC &raw_data,float percent=0.8){
int new_row=raw_data.first.rows()*percent;
return make_pair(
make_pair(raw_data.first.topRows(new_row),raw_data.second.topRows(new_row)),
make_pair(raw_data.first.topRows(raw_data.first.rows()-new_row),raw_data.second.topRows(raw_data.first.rows()-new_row))
);
}
int random_choice(int min,int max,int current){
std::random_device seeder;
std::mt19937 engine(seeder());
std::uniform_int_distribution<int> dist(min, max);
int rand=dist(engine);
while(rand==current){
rand=dist(engine);
}
return rand;
}
_PARAM SMO(const MatrixXf &features,const VectorXf& labels){
int rows=features.rows(),cols=features.cols();
int b=0,iter_count=0;
VectorXf alphas(rows);
alphas.setZero();
while(iter_count<=Max_iter){
int pair_alpha_changed_count=0;
for(int i=0;i<rows;++i){
//计算拉格朗日表示fX_i和损失E_i
float fX_i=(alphas.cwiseProduct(labels)).transpose()*(features*(features.row(i).transpose()))+b;
//float fX_i=(alphas.cwiseProduct(labels)).transpose()*(kernel_RBF(features,VectorXf(features.row(i)),1.3f))+b;
float E_i=fX_i-labels(i);
if((labels(i)*E_i<-Threshold && alphas(i)<C) || (labels(i)*E_i>Threshold && alphas(i)>0)){
//随机挑选j并计算拉格朗日fX_j和E_j
int j=random_choice(0,rows-1,i);
float fX_j=(alphas.cwiseProduct(labels)).transpose()*(features*(features.row(j).transpose()))+b;
//float fX_j=(alphas.cwiseProduct(labels)).transpose()*(kernel_RBF(features,VectorXf(features.row(j)),1.3f))+b;
float E_j=fX_j-labels(j);
//保留i和j所对应的旧的alphas
float alphas_old_i=alphas(i);
float alphas_old_j=alphas(j);
//计算上下界, 如果上下界相同则重新选择
float zero=0;
float L=(labels(i)!=labels(j))?max(zero,alphas(j)-alphas(i)):max(zero,alphas(i)+alphas(j)-C);
float H=(labels(i)!=labels(j))?min(C,C+alphas(j)-alphas(i)):min(C,alphas(i)+alphas(j));
if(L==H) continue;
//计算步长eta, 大于等于0说明不是支持向量
float eta=static_cast<float>(2.0f*features.row(i)*(features.row(j).transpose()))-static_cast<float>(features.row(i)*(features.row(i).transpose()))-static_cast<float>(features.row(j)*(features.row(j).transpose()));
if(eta>=0) continue;
//更新alphas_j并对alphas_j加窗
alphas(j)-=labels(j)*(E_i-E_j)/eta;
alphas(j)=alphas(j)>H?H:(alphas(j)<L?L:alphas(j));
//如果alphas_j变化太小则不更新
if(abs(alphas(j)-alphas_old_j)<Alpha_threshold) continue;
//更新alphas_i
alphas(i)+=static_cast<float>(labels.row(j)*labels.row(i))*(alphas_old_j-alphas(j));
//更新b_1和b_2
float b_1 = b - E_i- labels(i)*(alphas(i)-alphas_old_i)*features.row(i)*features.row(i).transpose() - labels(j)*(alphas(j)-alphas_old_j)*features.row(i)*features.row(j).transpose();
float b_2 = b - E_j- labels(i)*(alphas(i)-alphas_old_i)*features.row(i)*features.row(j).transpose() - labels(j)*(alphas(j)-alphas_old_j)*features.row(j)*features.row(j).transpose();
//更新b
b=(0<alphas(i)&&C>alphas(i))?b_1:
((0<alphas(j)&&C>alphas(j))?b_2:
(b_1+b_2)/2);
++pair_alpha_changed_count;
}
}
cout<<"第 "<<iter_count<<" 次迭代. 在这次迭代中, 共有 "<<pair_alpha_changed_count<<" 个SMO对被改变"<<endl;
if(!pair_alpha_changed_count) ++iter_count;
else iter_count=0;
}
return make_pair(alphas,b);
}
inline VectorXf cal_weight(const MatrixXf &features,const VectorXf &labels,const VectorXf &alphas){
int rows=features.rows(),cols=features.cols();
VectorXf weight=labels.cwiseProduct(alphas).replicate(1,cols).cwiseProduct(features).colwise().sum().transpose();
return weight;
}
//径向基核函数
VectorXf kernel_RBF(MatrixXf features,VectorXf line,float var=RBF_var){
features.rowwise()-=line.transpose();
ArrayXf kV=ArrayXf((features*features.transpose()).diagonal()/(pow(var,2))*(-1));
return kV.exp();
}
//调用python代码作图
void python_plot(VectorXf &weight,float b){
setenv("PYTHONPATH",".",1); //将python路径设为当前工作路径
Py_Initialize();
PyObject* myModuleString = PyString_FromString((char*)"svm");
PyObject* myModule = PyImport_Import(myModuleString);
PyObject* myFunction = PyObject_GetAttrString(myModule,(char*)"plot_points");
//通过元组传入参数
PyObject *pArgs = PyTuple_New(3);
PyTuple_SetItem(pArgs,0, PyFloat_FromDouble(static_cast<double>(weight(0))));
PyTuple_SetItem(pArgs,1, PyFloat_FromDouble(static_cast<double>(weight(1))));
PyTuple_SetItem(pArgs,2, PyFloat_FromDouble(static_cast<double>(b)));
//调用函数
PyObject_CallObject(myFunction, pArgs);
Py_Finalize();
}
//main.cpp
#include "Eigen/Dense"
#include "model.h"
#include "model.cpp"
int main(){
_MAT_VEC Train;
_MAT_VEC Test;
_MAT_VEC total_data=load_data();
{
auto whole_data=train_test_split(total_data);
Train=move(whole_data.first);
Test=move(whole_data.second);
}
assert(Train.first.rows()==Train.second.rows());
_PARAM alpha_b=SMO(Train.first,Train.second);
VectorXf weight=cal_weight(Train.first,Train.second,alpha_b.first);
ArrayXf arr((Test.first*weight+alpha_b.second*VectorXf::Ones(Test.first.rows())).cwiseProduct(Test.second));
cout<<"权重大小w为: "<<weight.transpose()<<"偏置项b为: "<<alpha_b.second<<endl;
cout<<"训练样本大小: "<<Train.first.rows()<<endl<<"测试样本大小: "<<Test.first.rows()<<endl;
cout<<"测试样本正确的数量: "<<(arr>=0).count()<<endl;
python_plot(weight,alpha_b.second);
}
#svm.py
# -*- coding:UTF-8 -*-
def plot_points(a1,a2,b):
import matplotlib.pyplot as plt
import numpy as np
import types
fileName=''
features = []; labels = []
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
features.append([float(lineArr[0]), float(lineArr[1])])
labels.append(float(lineArr[2]))
data_plus = []
data_minus = []
for i in range(len(features)):
if labels[i] > 0:
data_plus.append(features[i])
else:
data_minus.append(features[i])
data_plus_np = np.array(data_plus)
data_minus_np = np.array(data_minus)
plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7,color='red')
plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7,color='blue')
x1 = max(features)[0]
x2 = min(features)[0]
y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
plt.plot([x1, x2], [y1, y2])
plt.title("Sample data and the svm linear discriminant")
plt.show()