人工智能(4)遗传规划

上次我们提到了error-correction ,也即错误纠正的方式去训练和调整模型,是最基本的训练方式,适用于线性可分的情况(linear separable),这种方式也具有自身的局限性,举个例子,假如说现在有四个训练数据,(-1,-1,1),(1,1,1),(1,-1,0),(-1,1,0),括号内前两个值分别是特征,最后一个值是label(标签),这四条数据是线性不可分的一个例子。数据是二维的,对应的在二维平面上,找不到一条直线,能把点(-1,-1),(1,1)分到直线的一边,同时把(1,-1),(-1,1)分到另一边 (分成0和1两类),也即线性不可分,所以说error-correction 过程有局限性。

今天来看一个新的学习过程,Genetic Programming, 中文翻译多用“遗传规划”,这里我们也用遗传规划。

根据达尔文的进化论,我们人类一步步走到今天,是长时间的演进而来的。同样的,机器能不能也进化呢(Machine Evolution)? 或者往小的说,我们要想训练的模型能不能由一个随机的模型进化成我们想要的模型呢?答案,是可以的。

简单的来说,evolution(进化)的过程主要包括 reproduction (繁殖)和survival of the fittest (择优)。Reproduction的过程其实涉及到三个方面的过程,我们这样去模拟:

Copy(从上一代直接复制下来)

Crossover(混合双亲的基因)

Mutation(变异)

那么survival of fittest 过程需要定义一个function 来选择最合适的那个。比如:假设长颈鹿的进化过程是选择最长脖子的那一个,那么这个function就应该是 从给定的数量的长颈鹿中,找出脖子最长的那一个。这就是一个简单的fitness function。

对于一个模型(或者程序),我们寻求最合适的程序或者模型的过程通常可以这样去实行:

随机产生若干数量(比如5000,10000)的模型,作为第一代模型,下一代模型的产生过程是这样的:

Copy 9% 作为下一代,这9%的选择是择优的一个过程,假设有10000个模型,那么900个模型将会直接复制过来,其中每一个都经过了tournament selection (中文:锦标赛选择,简称TS)过程。TS过程是这样的,随机选择7个模型,用fitness function选出最合适的那一个。Fitness function 依据问题的不同,也不同。就像猎豹的进化可能fitness function 就是选择速度最快的那一个,长颈鹿则是看脖子的长短。(例子如有不当之处,还请指出。。)

Crossover 90%, 也即9000个下一代的产生过程是这样的:

先用TS过程选出一个mother,然后TS过程选出一个father,然后随机的把mother的模型的一部分去替换father模型的对应的部分,从而产生一个新的个体,作为下一代。

Mutation 1%,也即有100个下一代是这样产生的,其中每一个的产生过程是这样的:

首先TS 过程选出一个模型,随机选择模型的某一部分,做出随机的改变。

好了,讲了上面这么多,还有两个疑问,模型是什么?fitness function 是啥?

来看一个实际的问题,假设现在有若干条数据,每一条数据是n维的,也即有n个特征,和对应的标签,标签是0和1假定。希望通过genetic programming的过程确定一个模型,这个模型尽可能的适用于给出的数据。

那么这个模型其实可以是一个n+1维的权重向量,因为数据虽然是n维的,我们一般会加一个数字1,作为第n+1个向量值,这样权重向量的第n+1个值即为threshold(阈值),可以参考上一次的内容。

好,来看一下参考的训练集,

来看一下代码的实现:

训练过程,最后权重向量趋于稳定值。

好的,这次就是这样,下次一起来看一下AI领域有关search (搜索)方向的一些重要话题。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容

  • 总有天会勇敢,再也不惧,你等等我可好? 前些天和表妹出去散步,她说一起等绿灯那个男生是她前男友。我吃惊的看着她,没...
    南于阅读 525评论 0 0
  • 一切归于平静了。可怕的静默,死一般的沉寂,然而那对我来说却是唯一安全的防线了,稍有触碰,便会瞬间崩溃决堤。为了加固...
    sunflowerkmj阅读 625评论 0 1
  • 这个星期,费城到了入秋的季节。里奇凝视着窗外,室内的热气和冰冷的空气发生反应,在玻璃上留下了淡淡的霜花。 就在不久...
    Graceland阅读 603评论 2 2