TensorFlow or PyTorch

既然你已经读到了这篇文章,我就断定你已经开始了你的深度学习之旅了,并且对人造神经网络的研究已经有一段时间了;或者也许你正打算开始你的学习之旅。无论是哪一种情况,你都是因为发现你陷入了困惑中,才找到了这篇文章。你可能查询浏览了各种各样的深度学习的框架和库,但是其中有两个比较突出,他们是两个最流行的深度学习库:TensorFlow 和 PyTorch。你没有办法指出这两个库有什么本质的不同,不用担心!我将在这网络上无休止的存储空间中添加一篇新的文章,也许可以帮你弄清楚一些问题。我将简要的快速的给出你五点内容。仅仅是五点,那么,让我们开始吧!

第一点:尽管 TensorFlow 和 PyTorch 都是开源的,但是他们是由两个不同的公司创建的。TensorFlow 是由 Google 基于 Theano 开发的,而 PyTorch 是由 Facebook 基于 Torch 开发的。

第二点:这两个框架最大的不同是他们定义计算图的方式不同。TensorFlow 定义一个静态图,而 PyTorch 定义动态图,这是什么意思呢?意思就是在 TensorFlow 中,你必须首先定义整个计算图,然后运行你的机器学习模型。但是在 PyTorch 中,你可以在运行的过程中,定义或控制你的图,当在神经网络中使用变长的输入时,这是非常有用的。

第三点:TensorFlow 比 PyTorch 有更加陡峭的学习曲线。PyTorch 更具有 Python 风格,且在构建机器学习模型时更加直观。另一方面,为了学习 TensorFlow,你必须先学习一些他的工作机制(例如 sessions、placeholders 等),因此学习 TensorFlow 比学习 PyTorch 更难一点。

第四点:相比 PyTorch 来说,TensorFlow 背后有更大的社区,这意味着找到资源去学习 TensorFlow,或者是寻找问题的解决办法都会更容易一些。许多的教程和 MOOC(公开课)上面也都使用的是 TensorFlow 而不是 PyTorch,这是因为相比 TensorFlow 来说,PyTorch 是很新的东西。因此在资源方面,相比 PyTorch 来说,你会找到更多的 TensorFlow 的内容。

第五点:如果不讨论 TensorBoard,这个对比就是不完整的。TensorBoard 是一个出色的工具,你可以用它在浏览器中直接可视化你的机器学习模型。PyTorch 没有这个工具,尽管你可以使用类似于 Matplotlib 这样的工具。尽管你可以使用一些方法集成一些东西来让你在使用 PyTorch 时可以使用 TensorBoard,但是它本事是不原生支持的。

最后,TensorFlow 在生产模型和伸缩性上更好,它就是为了生产环境准备的。鉴于 PyTorch 是更容易学习,使用起来也更轻松,因此对于激情项目和快速原型制作来说,它相对更好。

好吧,够了!告诉我哪一个更好?

没有正确答案。(我知道,别人这么说的话我也很讨厌)

真实情况就是一些人发现使用 PyTorch 更好,而另外一些人发现使用 TensorFlow 更好。它们都是很好的框架,有很好的社区和支持,它们都可以完成工作,它们都是神器的魔杖,都可以做一些机器学习的魔术。

我希望我可以帮助你更清楚一些你的困惑(一点点,也许吧)。如果你是真的很困惑并且都没有使用过,那就随便选择一个开始学习,随着你的学习,你会有更多的直觉去帮你做决定。

最后想说的是,他们都是工具,你可以选择任何一个,开始学习机器学习科学和艺术!

翻译自 Tensorflow or PyTorch : The force is strong with which one?— Yashwardhan Jain,在保证原意不变情况下,略有润色和修改。

http://bit.ly/2rOpl7Z

公众号原文

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355