计算机视觉2-沐神笔记篇

常用的算法

区域卷积神经网络(R-CNN)系列

R-CNN

R-CNN模型

R-CNN首先从输入图像中选取若干(例如2000个)提议区域(如锚框也是一种选取方法),并标注它们的类别边界框(如偏移量)。然后,用卷积神经网络对每个提议区域进行前向传播以抽取其特征。 接下来,我们用每个提议区域的特征来预测类别边界框

具体来说,R-CNN包括以下四个步骤:

  1. 对输入图像使用选择性搜索来选取多个高质量的提议区域。这些提议区域通常是在多个尺度下选取的,并具有不同的形状和大小;每个提议区域都将被标注类别和真实边框
  2. 选择一个预训练的卷积神经网络,并将其在输出层之前截断。将每个提议区域变形为网络需要的输入尺寸,并通过前向传播输出抽取的提议区域特征
  3. 将每个提议区域的特征连同其标注的类别作为一个样本。训练多个支持向量机对目标分类,其中每个支持向量机用来判断样本是否属于某一个类别
  4. 将每个提议区域的特征连同其标注的边界框作为一个样本,训练线性回归模型来预测真实边界框。

尽管R-CNN模型通过预训练的卷积神经网络有效地抽取了图像特征,但它的速度很慢。 想象一下,我们可能从一张图像中选出上千个提议区域,这需要上千次的卷积神经网络的前向传播来执行目标检测。 这种庞大的计算量使得R-CNN在现实世界中难以被广泛应用。

R-CNN的训练过程包括两个阶段:

  1. 预训练卷积网络:首先,在大规模图像数据集上,如ImageNet数据集上,对卷积神经网络进行预训练。这样可以将网络初始化为良好的特征提取器,并且能够从图像中提取有用的高级特征。
  2. 微调与目标分类:然后,在目标检测任务的特定数据集上,使用生成的候选区域和相应的标签进行微调,包括对SVM分类器和边界框回归器进行训练。

Fast R-CNN

Fast R-CNN模型

R-CNN的主要性能瓶颈在于,对每个提议区域,卷积神经网络的前向传播是独立的,而没有共享计算。 由于这些区域通常有重叠,独立的特征抽取会导致重复的计算。 Fast R-CNN 对R-CNN的主要改进之一,是仅在整张图象上执行卷积神经网络的前向传播。

以下是Fast R-CNN的主要特点和工作流程:

  1. 候选区域生成:与R-CNN类似,Fast R-CNN使用选择性搜索算法生成候选区域。然而,与R-CNN中对每个候选区域独立进行处理不同,Fast R-CNN在整个图像上进行特征提取。
  2. 特征提取:Fast R-CNN通过卷积神经网络(CNN)对整个图像进行前向传播,提取图像的特征图。这样可以避免为每个候选区域独立运行CNN,从而大大提高了速度。
  3. 候选区域池化(RoI Pooling):针对每个候选区域,Fast R-CNN引入了候选区域池化层(RoI Pooling),将特征图上的候选区域映射到固定大小的特征图上。这样可以将不同大小的候选区域映射到相同大小的特征向量上,便于后续处理。
  4. 分类和边界框回归:对于每个候选区域,Fast R-CNN通过全连接层将其特征向量输入到分类器和边界框回归器中。分类器用于预测目标的类别概率,而边界框回归器用于精确定位目标的边界框。

它的主要计算如下:

  1. 与R-CNN相比,Fast R-CNN用来提取特征的卷积神经网络的输入是整个图像,而不是各个提议区域。此外,这个网络通常会参与训练。设输入为一张图像,将卷积神经网络的输出的形状记为1 \times c \times h_1 \times w_1;
  2. 假设选择性搜索生成了n个提议区域。这些形状各异的提议区域在卷积神经网络的输出上分别标出了形状各异的兴趣区域。然后,这些感兴趣的区域需要进一步抽取出形状相同的特征(比如指定高度h_2和宽度w_2),以便于连结后输出。为了实现这一目标,Fast R-CNN引入了兴趣区域汇聚层(RoI pooling):将卷积神经网络的输出和提议区域作为输入,输出连结后的各个提议区域抽取的特征,形状为n \times c \times h_2 \times w_2;
  3. 通过全连接层将输出形状变换为n \times d,其中超参数d取决于模型设计;
  4. 预测n个提议区域中每个区域的类别和边界框。更具体地说,在预测类别和边界框时,将全连接层的输出分别转换为形状为n \times qq是类别的数量)的输出和形状为n \times 4的输出。其中预测类别时使用softmax回归。

在Fast R-CNN中提出的兴趣区域汇聚层与之前介绍的汇聚层有所不同。在汇聚层中,我们通过设置汇聚窗口、填充和步幅的大小来间接控制输出形状。而兴趣区域汇聚层对每个区域的输出形状是可以直接指定的。

例如,指定每个区域输出的高和宽分别为h_2w_2。对于任何形状为h \times w的兴趣区域窗口,该窗口将被划分为h_2 \times w_2子窗口网格.其中每个子窗口的大小约为(h/h_2) \times (w/w_2)。 在实践中,任何子窗口的高度和宽度都应向上取整,其中的最大元素作为该子窗口的输出。 因此,兴趣区域汇聚层可从形状各异的兴趣区域中均抽取出形状相同的特征。

4 \times 4的输入中,我们选取了左上角3 \times 3的兴趣区域。 对于该兴趣区域,我们通过2 \times 2的兴趣区域汇聚层得到一个2 \times 2的输出。 请注意,四个划分后的子窗口中分别含有元素0、1、4、5(5最大);2、6(6最大);8、9(9最大);以及10。

兴趣区域汇聚层

Faster R-CNN

Faster R-CNN 模型

为了较精确地检测目标结果,Fast R-CNN模型通常需要在选择性搜索中生成大量的提议区域。 Faster R-CNN提出将选择性搜索替换为区域提议网络(region proposal network),从而减少提议区域的生成数量,并保证目标检测的精度。

描述了Faster R-CNN模型。 与Fast R-CNN相比,Faster R-CNN只将生成提议区域的方法从选择性搜索改为了区域提议网络,模型的其余部分保持不变。具体来说,区域提议网络的计算步骤如下:

  1. 使用填充为1的3\times 3的卷积层变换卷积神经网络的输出,并将输出通道数记为c。这样,卷积神经网络为图像抽取的特征图中的每个单元均得到一个长度为c的新特征。
  2. 以特征图的每个像素为中心,生成多个不同大小和宽高比的锚框并标注它们。
  3. 使用锚框中心单元长度为c的特征,分别预测该锚框的二元类别(含目标还是背景)和边界框。
  4. 使用非极大值抑制,从预测类别为目标的预测边界框中移除相似的结果。最终输出的预测边界框即是兴趣区域汇聚层所需的提议区域。

值得一提的是,区域提议网络作为Faster R-CNN模型的一部分,是和整个模型一起训练得到的。 换句话说,Faster R-CNN的目标函数不仅包括目标检测中的类别和边界框预测,还包括区域提议网络中锚框的二元类别和边界框预测。 作为端到端训练的结果,区域提议网络能够学习到如何生成高质量的提议区域,从而在减少了从数据中学习的提议区域的数量的情况下,仍保持目标检测的精度。

Mask R-CNN

Mask R-CNN 模型

Mask R-CNN是基于Faster R-CNN修改而来的。 具体来说,Mask R-CNN将兴趣区域汇聚层替换为了 兴趣区域对齐层,使用双线性插值(bilinear interpolation)来保留特征图上的空间信息,从而更适于像素级预测。 兴趣区域对齐层的输出包含了所有与兴趣区域的形状相同的特征图。 它们不仅被用于预测每个兴趣区域的类别和边界框,还通过额外的全卷积网络预测目标的像素级位置。 本章的后续章节将更详细地介绍如何使用全卷积网络预测图像中像素级的语义。

小结

  1. R-CNN对图像选取若干提议区域,使用卷积神经网络对每个提议区域执行前向传播以抽取其特征,然后再用这些特征来预测提议区域的类别和边界框。

  2. Fast R-CNN对R-CNN的一个主要改进:只对整个图像做卷积神经网络的前向传播。它还引入了兴趣区域汇聚层,从而为具有不同形状的兴趣区域抽取相同形状的特征。

  3. Faster R-CNN将Fast R-CNN中使用的选择性搜索替换为参与训练的区域提议网络,这样后者可以在减少提议区域数量的情况下仍保证目标检测的精度。

  4. Mask R-CNN在Faster R-CNN的基础上引入了一个全卷积网络,从而借助目标的像素级位置进一步提升目标检测的精度。

单发多框检测(SSD)

单发多框检测模型主要由一个基础网络块和若干多尺度特征块串联而成

SSD (Single Shot MultiBox Detector) 是一种用于目标检测的算法,它结合了高准确度和实时性的优势。SSD算法的核心思想是通过在图像上应用多个不同尺度的卷积滤波器来同时检测不同大小的目标。

下面是SSD算法的主要步骤:

  1. 特征提取:SSD首先使用一个预训练的卷积神经网络(如VGGNet或ResNet)来提取图像的特征。这些特征图具有不同的分辨率和语义信息。

  2. 特征图处理:对于每个特征图,SSD在每个位置应用一组预定义的卷积滤波器,这些滤波器用于检测不同大小和宽高比的目标。这些滤波器被称为锚框(anchor boxes)或默认框(default boxes)。

  3. 目标分类和定位:对于每个锚框,SSD计算两个分数:目标的分类分数和边界框的位置调整。分类分数表示该锚框内是否包含目标,并且根据目标类别的数量进行打分。位置调整表示将锚框调整为最接近目标边界框的位置。

  4. 非最大抑制(Non-Maximum Suppression):在得到所有锚框的分类分数和位置调整后,SSD使用非最大抑制来移除重叠的检测结果。它通过设置一个阈值来筛选掉低置信度的检测结果,并使用IoU(Intersection over Union)来合并高重叠的边界框。

  5. 多尺度特征融合:为了检测不同大小的目标,SSD通过在网络的不同层次上应用不同尺度的卷积滤波器来融合多尺度的特征。这样可以在保持高分辨率的同时检测小尺寸的目标。

SSD算法的优点是可以在单个前向传播过程中完成目标检测,速度较快,并且在准确度和实时性之间取得了良好的平衡。它被广泛应用于实时视频分析、自动驾驶、人脸检测等领域。顶部的多尺度特征图较小,但具有较大的感受野,它们适合检测较少但较大的物体。 简而言之,通过多尺度特征块,单发多框检测生成不同大小的锚框,并通过预测边界框的类别和偏移量来检测大小不同的目标,因此这是一个多尺度目标检测模型。

实现

类别预测层

设目标类别的数量为q。这样一来,锚框有q+1个类别,其中0类是背景。 在某个尺度下,设特征图的高和宽分别为hw。 如果以其中每个单元为中心生成a个锚框,那么我们需要对hwa个锚框进行分类。如果使用全连接层作为输出,很容易导致模型参数过多。所以使用卷积层的通道来输出类别预测的方法, 单发多框检测采用同样的方法来降低模型复杂度。

具体来说,类别预测层使用一个保持输入高和宽的卷积层。 这样一来,输出和输入在特征图宽和高上的空间坐标一一对应。 考虑输出和输入同一空间坐标(xy):输出特征图上(xy)坐标的通道里包含了以输入特征图(xy)坐标为中心生成的所有锚框的类别预测。因此输出通道数为a(q+1),其中索引为i(q+1) + j(0 \leq j \leq q)的通道代表了索引为i的锚框有关类别索引为j的预测。

在下面,我们定义了这样一个类别预测层,通过参数num_anchors和num_classes分别指定了aq。 该图层使用填充为1的3\times3的卷积层。此卷积层的输入和输出的宽度和高度保持不变。

%matplotlib inline
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


def cls_predictor(num_inputs, num_anchors, num_classes):
    return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),
                     kernel_size=3, padding=1)

边界框预测层

边界框预测层的设计与类别预测层的设计类似。 唯一不同的是,这里需要为每个锚框预测4个偏移量,而不是q+1个类别。

def bbox_predictor(num_inputs, num_anchors):
    return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)

连结多尺度的预测

正如我们所提到的,单发多框检测使用多尺度特征图来生成锚框并预测其类别和偏移量。 在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。

在以下示例中,我们为同一个小批量构建两个不同比例(Y1和Y2)的特征图,其中Y2的高度和宽度是Y1的一半。 以类别预测为例,假设Y1和Y2的每个单元分别生成了5个和3个锚框。进一步假设目标类别的数量为10,对于特征图Y1和Y2,类别预测输出中的通道数分别为5\times(10+1)=553\times(10+1)=33,其中任一输出的形状是(批量大小,通道数,高度,宽度)。

def forward(x, block):
    return block(x)

Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape
(torch.Size([2, 55, 20, 20]), torch.Size([2, 33, 10, 10]))

正如我们所看到的,除了批量大小这一维度外,其他三个维度都具有不同的尺寸。 为了将这两个预测输出链接起来以提高计算效率,我们将把这些张量转换为更一致的格式。

通道维包含中心相同的锚框的预测结果。我们首先将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高x宽x通道数)的格式,以方便之后在维度1上的连结。

def flatten_pred(pred):
    return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)

def concat_preds(preds):
    return torch.cat([flatten_pred(p) for p in preds], dim=1)

这样一来,尽管Y1和Y2在通道数、高度和宽度方面具有不同的大小,我们仍然可以在同一个小批量的两个不同尺度上连接这两个预测输出。

concat_preds([Y1, Y2]).shape
torch.Size([2, 25300])

高和宽减半块

为了在多个尺度下检测目标,我们在下面定义了高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半。 事实上,该块应用了在 subsec_vgg-blocks中的VGG模块设计。 更具体地说,每个高和宽减半块由两个填充为13\times3的卷积层、以及步幅为22\times2最大汇聚层组成。 我们知道,填充为13\times3卷积层不改变特征图的形状。但是,其后的2\times2的最大汇聚层将输入特征图的高度和宽度减少了一半。 对于此高和宽减半块的输入和输出特征图,因为1\times 2+(3-1)+(3-1)=6,所以输出中的每个单元在输入上都有一个6\times6的感受野。因此,高和宽减半块会扩大每个单元在其输出特征图中的感受野。

def down_sample_blk(in_channels, out_channels):
    blk = []
    for _ in range(2):
        blk.append(nn.Conv2d(in_channels, out_channels,
                             kernel_size=3, padding=1))
        blk.append(nn.BatchNorm2d(out_channels))
        blk.append(nn.ReLU())
        in_channels = out_channels
    blk.append(nn.MaxPool2d(2))
    return nn.Sequential(*blk)

在以下示例中,我们构建的高和宽减半块会更改输入通道的数量,并将输入特征图的高度和宽度减半。

forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape
torch.Size([2, 10, 10, 10])

基本网络块

基本网络块用于从输入图像中抽取特征。 为了计算简洁,我们构造了一个小的基础网络,该网络串联3个高和宽减半块,并逐步将通道数翻倍。 给定输入图像的形状为256\times256,此基本网络块输出的特征图形状为32 \times 32256/2^3=32)。

def base_net():
    blk = []
    num_filters = [3, 16, 32, 64]
    for i in range(len(num_filters) - 1):
        blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))
    return nn.Sequential(*blk)

forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
torch.Size([2, 64, 32, 32])

完整的模型

完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池将高度和宽度都降到1。从技术上讲,第二到第五个区块都是多尺度特征块。

def get_blk(i):
    if i == 0:
        blk = base_net()
    elif i == 1:
        blk = down_sample_blk(64, 128)
    elif i == 4:
        blk = nn.AdaptiveMaxPool2d((1,1))
    else:
        blk = down_sample_blk(128, 128)
    return blk

现在我们为每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y)。

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
    Y = blk(X)
    anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
    cls_preds = cls_predictor(Y)
    bbox_preds = bbox_predictor(Y)
    return (Y, anchors, cls_preds, bbox_preds)

一个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,我们通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。

sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
         [0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

现在,我们就可以按如下方式定义完整的模型TinySSD了。

class TinySSD(nn.Module):
    def __init__(self, num_classes, **kwargs):
        super(TinySSD, self).__init__(**kwargs)
        self.num_classes = num_classes
        idx_to_in_channels = [64, 128, 128, 128, 128]
        for i in range(5):
            # 即赋值语句self.blk_i=get_blk(i)
            setattr(self, f'blk_{i}', get_blk(i))
            setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],
                                                    num_anchors, num_classes))
            setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],
                                                      num_anchors))

    def forward(self, X):
        anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
        for i in range(5):
            # getattr(self,'blk_%d'%i)即访问self.blk_i
            X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(
                X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
                getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))
        anchors = torch.cat(anchors, dim=1)
        cls_preds = concat_preds(cls_preds)
        cls_preds = cls_preds.reshape(
            cls_preds.shape[0], -1, self.num_classes + 1)
        bbox_preds = concat_preds(bbox_preds)
        return anchors, cls_preds, bbox_preds

我们创建一个模型实例,然后使用它对一个256 \times 256像素的小批量图像X执行前向传播。

如本节前面部分所示,第一个模块输出特征图的形状为32 \times 32。 回想一下,第二到第四个模块为高和宽减半块,第五个模块为全局汇聚层。 由于以特征图的每个单元为中心有4个锚框生成,因此在所有五个尺度下,每个图像总共生成(32^2 + 16^2 + 8^2 + 4^2 + 1)\times 4 = 5444个锚框。

net = TinySSD(num_classes=1)
X = torch.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)

print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)
output anchors: torch.Size([1, 5444, 4])
output class preds: torch.Size([32, 5444, 2])
output bbox preds: torch.Size([32, 21776])

训练模型

读取数据集和初始化

batch_size = 32
train_iter, _ = load_data_bananas(batch_size)#我已经下载好了,所以用前面的定义好的函数来导入数据

香蕉检测数据集中,目标的类别数为1。 定义好模型后,我们需要初始化其参数并定义优化算法。

device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)

定义损失函数和评价函数

目标检测有两种类型的损失。 第一种有关锚框类别的损失:我们可以简单地复用之前图像分类问题里一直使用的交叉熵损失函数来计算; 第二种有关正类锚框偏移量的损失:预测偏移量是一个回归问题。 但是,对于这个回归问题,我们在这里不使用平方损失,而是使用
范数损失,即预测值和真实值之差的绝对值。 掩码变量bbox_masks令负类锚框和填充锚框不参与损失的计算。 最后,我们将锚框类别和偏移量的损失相加,以获得模型的最终损失函数。

cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')

def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
    batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]
    cls = cls_loss(cls_preds.reshape(-1, num_classes),
                   cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)
    bbox = bbox_loss(bbox_preds * bbox_masks,
                     bbox_labels * bbox_masks).mean(dim=1)
    return cls + bbox

我们可以沿用准确率评价分类结果。 由于偏移量使用了L_1范数损失,我们使用平均绝对误差来评价边界框的预测结果。这些预测结果是从生成的锚框及其预测偏移量中获得的。

def cls_eval(cls_preds, cls_labels):
    # 由于类别预测结果放在最后一维,argmax需要指定最后一维。
    return float((cls_preds.argmax(dim=-1).type(
        cls_labels.dtype) == cls_labels).sum())

def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
    return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

训练模型

在训练模型时,我们需要在模型的前向传播过程中生成多尺度锚框(anchors),并预测其类别(cls_preds)和偏移量(bbox_preds)。 然后,我们根据标签信息Y为生成的锚框标记类别(cls_labels)和偏移量(bbox_labels)。 最后,我们根据类别和偏移量的预测和标注值计算损失函数。为了代码简洁,这里没有评价测试数据集。

num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                        legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):
    # 训练精确度的和,训练精确度的和中的示例数
    # 绝对误差的和,绝对误差的和中的示例数
    metric = d2l.Accumulator(4)
    net.train()
    for features, target in train_iter:
        timer.start()
        trainer.zero_grad()
        X, Y = features.to(device), target.to(device)
        # 生成多尺度的锚框,为每个锚框预测类别和偏移量
        anchors, cls_preds, bbox_preds = net(X)
        # 为每个锚框标注类别和偏移量
        bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)
        # 根据类别和偏移量的预测和标注值计算损失函数
        l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
                      bbox_masks)
        l.mean().backward()
        trainer.step()
        metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),
                   bbox_eval(bbox_preds, bbox_labels, bbox_masks),
                   bbox_labels.numel())
    cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
    animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on '
      f'{str(device)}')
result

预测目标

在预测阶段,我们希望能把图像里面所有我们感兴趣的目标检测出来。在下面,我们读取并调整测试图像的大小,然后将其转成卷积层需要的四维格式。

X = torchvision.io.read_image('./data/banana.jpg').unsqueeze(0).float()
img = X.squeeze(0).permute(1, 2, 0).long()

使用下面的multibox_detection函数,我们可以根据锚框及其预测偏移量得到预测边界框。然后,通过非极大值抑制来移除相似的预测边界框。

def predict(X):
    net.eval()
    anchors, cls_preds, bbox_preds = net(X.to(device))
    cls_probs = F.softmax(cls_preds, dim=2).permute(0, 2, 1)
    output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)
    idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
    return output[0, idx]

output = predict(X)

最后,我们筛选所有置信度不低于0.9的边界框,做为最终输出。

def display(img, output, threshold):
    d2l.set_figsize((5, 5))
    fig = d2l.plt.imshow(img)
    for row in output:
        score = float(row[1])
        if score < threshold:
            continue
        h, w = img.shape[0:2]
        bbox = [row[2:6] * torch.tensor((w, h, w, h), device=row.device)]
        d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')

display(img, output.cpu(), threshold=0.9)
result

小结

  • 单发多框检测是一种多尺度目标检测模型。基于基础网络块和各个多尺度特征块,单发多框检测生成不同数量和不同大小的锚框,并通过预测这些锚框的类别和偏移量检测不同大小的目标。

  • 在训练单发多框检测模型时,损失函数是根据锚框的类别和偏移量的预测及标注值计算得出的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容