大数据这五年

转眼间,自己研究大数据已经五年了。应媒体之约,做个官样文章。原载《中国电子报》(2017-8-22),修订后重发。


过去五年,大数据理念已经深入人心,“用数据说话”的已经成为所有人的共识,数据成了堪比石油、黄金、钻石的战略资源。人们对大数据的认识也更加具体化,数据无所谓大不大,有用最重要;数据是基础,但分析挖掘和应用才是根本。

五年来,不仅对大数据的认识经历了螺旋上升,而且实践逐渐落地,国内的大数据产业政策日渐完善,技术、应用和产业都取得了非常明显的进展。

1.政策持续完善。在顶层设计上,国务院《促进大数据发展行动纲要》对政务数据共享开放、产业发展和安全三方面做了总体部署。数据开放共享方面的《政务信息资源共享管理暂行办法》、产业方面的工信部《大数据产业发展规划(2016-2020)》、数据安全方面的《中华人民共和国网络安全法》等也都已出台。卫计、农业、检察、税务等部门还出台了领域大数据发展的具体政策。此外,17个省市发布大数据发展规划,十几个省市设立了大数据管理局,8个国家大数据综合试验区、11个国家工程实验室启动建设。可以说,适应大数据发展的政策环境已经初步形成。

2.技术稳步提升。开源给国内产业界提供了一个跳板,让我们与国际上大数据技术先进水平的差距在不断缩小。2014-2016年,百度、阿里和腾讯先后拿下国际上知名的Sort Benchmark大赛冠军。这个竞赛全面比拼分布式系统软件架构能力,包括如海量数据分布式存储、计算任务切片调度、节点通信协调同步、数据计算监控、硬件架构等方面的能力。而这一赛事2014年之前的冠军均被微软、Yahoo、亚马逊等包揽。这从一个侧面反映了我国产业界在大大数据处理技术水平的快速提升。与此同时,还有像一批国产化的商用大数据平台产品崛起,底层技术越来越扎实。

3.应用逐渐落地。比如,在金融领域,2016年商业银行全面部署大数据基础设施,五大国有银行、股份制、城商行和农商行已经逐步开始了从传统数据仓库架构向大数据平台架构的转型改造过程,基于大数据风控的“秒贷”业务越来越普及,不仅提升了贷款效率,还扩大的普惠金融的覆盖面。在电信领域,中国电信的大数据平台已经扩展到31个省,汇聚了全国的基础数据形成了“天翼大数据”服务能力;中国联通也实现了数据整合,大数据产品体系已经推出征信、指数、营销等六大产品种类。

4.产业快速崛起。围绕数据的产生、汇聚、处理、应用等环节的产业生态从无到有,不断壮大。中国信息通信研究院发布的《中国大数据产业调查报告(2017年)》显示,2016年中国大数据核心产业(软件、硬件及服务)的市场规模为168亿元,较2015年增速达45%,预计到2020年将达到578亿元。2016年获得融资的企业数量达到400多家,2017年前三个月就有150多家企业获得融资,其中半数为中国公司,资本源源不断的投向大数据领域。

随着新一代人工智能浪潮的兴起,善于炒作者一定会迅速奔向下一个风口,估计大数据很快就要“退烧”了。不能怪大家不专一,只怪热点轮动太快,让人目不暇接。

大数据,代表了一种现象,即:数据的指数增长超过了人们管理、处理和应用数据的能力的增长,产生了一个“剪刀差”,而且这个“剪刀差”无疑将长期存在。无论是对一个国家还是一个企业,谁能在缩小大数据剪刀差上拔得头筹,把数据用好,就能占有竞争优势。

浮在水面的只是冰山一角

在IT圈,五年已太长,离七年之痒不远了,用我们领导的话说,要么成功,要么换壳。

五年又太短,大数据刚刚炒热,前景还很广阔,坚持下去才是真爱,前面还有很多问题(机遇)等着解决(捕获),比如以下几点:

1.打破数据孤岛。人人都想要别人的数据,但都不愿意把自己的数据给别人,这是人的天性。以前信息系统建设都从一个个“烟囱”开始,数据缺乏互通的技术基础,这却是“人祸”。从国家层面到企业内部,情况大同小异。麦肯锡2016年底的一份报告显示,大数据在很多领域没有达到预期效果,很重要的原因就是数据割裂。这些年,推动数据开放共享的政策举措在一直在加强,政策已经很给力了,但效果与预期相差甚远,碰到了瓶颈。开放共享政策再往前“推”,仿佛遇到一堵高高的墙,这时就需要技术“拉”一把。的确,这些年数据共享技术供应有些滞后了。

未来,如果同态加密(homomorphic encryption)、差分隐私(differential privacy)、多方安全计算(secure multi-party computation)、零知识证明(zero-knowledge proof)等技术能取得突破,数据共享就能再前进一大步。区块链的共享账本、集体维护、难以篡改特性,也有望能助推数据共享。

2.数据资产管理。数据分析工作,往往有80%的时间和精力都耗费在搜集、清洗和加工数据上。数据质量不过关,也会让数据分析效果大打折扣,甚至让分析结果谬以千里。很多单位大数据应用效果不佳,多半问题出在数据管理上。大家都同意把数据当做资产,甚至认为有朝一日数据会计入资产负债表。但如果对比桌椅板凳这些实物资产,我们对数据资产的管理,还处于非常原始的阶段。我们往往对自己的数据资产有哪些、有多少都不两眼一抹黑,更别说数据质量、数据安全、资产评估、资产交换交易等精细管理、价值挖掘和持续运营了。

然而,数据资产管理不像数据分析挖掘那么光鲜亮丽,就像城市的“下水道工程”,短期只有投入看不见产出。但长期又不得不做,是战略层面的事,当前不做未来返工的成本巨大。以后每个企业都将成为数据驱动的企业,打基础的事情要尽早。

3.深化领域应用。虽然大数据的应用取得了一定进展,在互联网、金融、电信等领域产生了实实在在的效益,医疗、工业领域也正在加速。但总体上只能说刚刚走出了小半步。一类是“平行替代”,如用金融和电信行业用Hadoop来重构原来的昂贵的数据仓库。另一类则是“补课”,如政务、医疗、工业等领域,正在做的工作是在原有业务系统之外,新建本来早该建设的数据平台。

这些大数据应用,显然还不够高大上,是物理反应,是量变而非质变,但的确也是发展必经的阶段。随着这些“替代”型或“补课”型应用的深入,未来业务与数据将加深融合,越来越多数据驱动的新模式、新业态值得所有人期待。也只有这样,数据强国战略才能落到实处。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,376评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,126评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,966评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,432评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,519评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,792评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,933评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,701评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,143评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,488评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,626评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,292评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,896评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,494评论 2 348

推荐阅读更多精彩内容