什么是神经网络

本文结构:

  1. 什么是神经网络
  2. 什么是神经元
  3. 神经网络的计算和训练
  4. 代码实现

1. 什么是神经网络

神经网络就是按照一定规则将多个神经元连接起来的网络

例如全连接(full connected, FC)神经网络,它的规则包括:

  • 有三种层:输入层,输出层,隐藏层。
  • 同一层的神经元之间没有连接。
  • full connected的含义:第 N 层的每个神经元和第 N-1 层的所有神经元相连,第 N-1 层神经元的输出就是第 N 层神经元的输入。
  • 每个连接都有一个权值。

不同的神经网络,具有不同的连接规则


2. 什么是神经元

神经元和感知器的区别也是在激活函数:
感知器,它的激活函数是阶跃函数,神经元,激活函数往往选择为 sigmoid 函数或 tanh 函数等

其中 sigmoid 函数的公式和图表示如下:

sigmoid 函数的求导公式:

想了解更多还可以看这篇:常用激活函数比较


3. 神经网络的训练

先向前计算,再向后传播

例如上面神经网络的结构

输入层,首先将输入向量的每个元素的值,赋给输入层的对应神经元

隐藏层,前一层传递过来的输入值,加权求和后,再输入到激活函数中,根据如下公式,向前计算这一层的每个神经元的值

输出层的计算和隐藏层的一样

用矩阵来表示

这个公式适用于每个隐藏层和输出层,就是 W 的值和 f 的形式会不一样,
其中 W 是某一层的权重矩阵,x 是某层的输入向量,a 是某层的输出向量

模型要学习的东西就 W。

诸如神经网络的连接方式、网络的层数、每层的节点数这些参数,不是学习出来的,而是人为事先设置的,称之为超参数。

训练它们的方法和前面感知器中用到的一样,就是要用梯度下降算法:

完整的推导可以看这篇,一步一步很详细:
手写,纯享版反向传播算法公式推导

part 4. 代码实现 下次再写

学习资料:
https://www.zybuluo.com/hanbingtao/note/476663


关于神经网络,写过的文章汇总:

Neural Networks Are Cool
理论
神经网络的前世
神经网络 之 感知器的概念和实现
神经网络 之 线性单元
手写,纯享版反向传播算法公式推导
常用激活函数比较
模型
图解何为CNN
用 Tensorflow 建立 CNN
图解RNN
CS224d-Day 5: RNN快速入门
用深度神经网络处理NER命名实体识别问题
用 RNN 训练语言模型生成文本
RNN与机器翻译
用 Recursive Neural Networks 得到分析树
RNN的高级应用
TensorFlow
一文学会用 Tensorflow 搭建神经网络
用 Tensorflow 建立 CNN
对比学习用 Keras 搭建 CNN RNN 等常用神经网络

推荐阅读 历史技术博文链接汇总
也许可以找到你想要的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,042评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,996评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,674评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,340评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,404评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,749评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,902评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,662评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,110评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,577评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,258评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,848评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,726评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,952评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,271评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,452评论 2 348

推荐阅读更多精彩内容