基于RFM的客户价值分析报告

项目背景

在面向客户制定运营策略、营销策略时,我们希望针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户分类。通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。

项目目标

本项目借助某电商客户数据,探讨如何对客户群体进行细分,以及细分后如何利用RFM模型对客户价值进行分析。在本项目中,主要希望实现以下三个目标:1.借助某电商客户数据,对客户进行群体分类;2.比较各细分群体的客户价值;3.对不同价值的客户制定相应的运营策略。

分析过程

1.数据预览 

我们的源数据是订单表,记录着用户交易相关字段

通过数据可以发现,订单状态有交易成功和退款关闭的,检查是否还有其他情况

只有这两种情况,后续清洗中需剔除退款订单。然后观察数据类型与缺失情况

订单一共28833行,没有缺失,付款日期是时间格式,实付金额、邮费和购买数量是数值型,其他均为字符串类型

2.数据清洗

(1)剔除退款

(2)关键字段提取:提取RFM模型所需要的买家昵称,付款时间,实付金额

(3)关键字段构造:构建模型所需的三个字段,R(最近一次购买时间间隔),F(购买频次),M(平均或累计购买金额)

首先构造R值,思路是按买家昵称分组,选取付款日期最大值

为了得到最终的R值,用今天减去每位用户最近一次付款时间,就得到R值了,这份订单是7月1日生成的,所以这里我们把“2019-7-1”当作“今天”

然后处理F,即每个用户累计购买频次(明确一下单个用户一天内购买多次订单合并为一次订单)

思路:引入一个精确到天的日期标签,依照“买家昵称”和“日期标签”分组,把每个用户一天内的多次下单合并,再统计购买次数

最后处理M,本案例M指用户平均支付金额,可以通过总金额除以购买频次计算出来

三个指标合并

3.维度打分 

维度确认的核心是分值确定。RFM模型中打分一般采取5分制,依据数据和业务的理解,进行分值的划分

R值依据行业经验,设置为30天一个跨度,区间左闭右开

F值和购买频次挂钩,每多购买一次,分值多加一分

M值我们按照50元的一个区间来进行划分

这一步我们确定了一个打分框架,每一个用户的每个指标,都有其对应的分值

4.分值计算 

(1)算出每个用户的R,F,M分值

(2)简化分类结果  

通过判断每个客户的R,F,M值是否大于平均值,来简化分类结果。0表示小于平均值,1表示大于平均值,整体组合下来有8个分组

5.客户分层

RFM经典分层按照R,F,M每一项指标是否高于平均值,把用户划分为8类

Python实现思路如下:先定义一个人群数值,将之前判断的R,F,M是否大于均值的三个值加起来

人群数值是数值类型,位于前面的0会自动略过,比如1代表001的高消费唤回客户人群,10对应010的一般客户

然后在python中定义一个判断函数,通过判断人群数值,来返回对应的分类标签

数据解读与建议:

首先查看各类用户占比情况

然后查看不同类型客户消费金额贡献占比

最后导出数据,在tableau中数据可视化展示

通过数据可视化后,我们可以发现:

1.客户流失情况严重,高消费唤回客户,流失客户占比超过总客户的50%

2.高消费唤回客户和频次深耕客户的金额总占比约66%,这两部分客户是消费的重点客户

3.流失客户和新客户的总人数占比约38%,但金额总占比只有约13%


建议:

1.针对高消费唤回客户,流失客户采用唤回策略,推送相关信息,发礼品券等挽留客户

2.针对高消费唤回客户和频次深耕客户,考虑继续挖掘其消费特性,如喜爱购买的产品,消费的时间段,后续据此加强店铺产品与时间段的改进,最大程度留住这两部分客户

3.针对流失客户和新客户金额总占比低,建议推出一些低价产品,用来拉取新客户,保证店铺的活跃性。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355