【机器学习基础】生成模型和判别模型

引入

监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出。这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X)。
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别为生成模型(generative model)和判别模型(discriminative model)。

决策函数和条件概率分布

决策函数Y=f(X)

决策函数Y=f(X):你输入一个X,它就输出一个Y,这个Y与一个阈值比较,根据比较结果判定X属于哪个类别。例如两类(w1和w2)分类问题,如果Y大于阈值,X就属于类w1,如果小于阈值就属于类w2。这样就得到了该X对应的类别了。

条件概率分布P(Y|X)

你输入一个X,它通过比较它属于所有类的概率,然后输出概率最大的那个作为该X对应的类别。例如:如果P(w1|X)大于P(w2|X),那么我们就认为X是属于w1类的。

小结

两个模型都可以实现对给定的输入X预测相应的输出Y的功能。实际上通过条件概率分布P(Y|X)进行预测也是隐含着表达成决策函数Y=f(X)的形式的。
而同样,很神奇的一件事是,实际上决策函数Y=f(X)也是隐含着使用P(Y|X)的。因为一般决策函数Y=f(X)是通过学习算法使你的预测和训练数据之间的误差平方最小化,而贝叶斯告诉我们,虽然它没有显式的运用贝叶斯或者以某种形式计算概率,但它实际上也是在隐含的输出极大似然假设(MAP假设)。也就是说学习器的任务是在所有假设模型有相等的先验概率条件下,输出极大似然假设。

生成方法和生成模型

生成模型:无穷样本==》概率密度模型 = 产生模型==》预测

生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)=P(X,Y)/P(X)作为预测的模型。这样的方法之所以成为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。用于随机生成的观察值建模,特别是在给定某些隐藏参数情况下。典型的生成模型有:朴素贝叶斯法、马尔科夫模型、高斯混合模型。这种方法一般建立在统计学和Bayes理论的基础之上。

生成方法的特点

  • 从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度;
  • 生成方法还原出联合概率分布,而判别方法不能;
  • 生成方法的学习收敛速度更快、即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;
  • 当存在隐变量时,扔可以用生成方法学习,此时判别方法不能用

判别方法和判别模型

判别模型:有限样本==》判别函数 = 预测模型==》预测

判别方法由数据直接学习决策函数f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。判别方法关心的是对给定的输入X,应该预测什么样的输出Y。典型的判别模型包括:k近邻法、感知机、决策树、逻辑斯蒂回归模型、最大熵模型、支持向量机、boosting方法和条件随机场等。判别模型利用正负例和分类标签,关注在判别模型的边缘分布。

判别方法的特点

  • 判别方法寻找不同类别之间的最优分类面,反映的是异类数据之间的差异;
  • 判别方法利用了训练数据的类别标识信息,直接学习的是条件概率P(Y|X)或者决策函数f(X),直接面对预测,往往学习的准确率更高;
  • 由于直接学习条件概率P(Y|X)或者决策函数f(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
  • 缺点是不能反映训练数据本身的特性

判别模型和生成模型对比

(1)训练时,二者优化准则不同
生成模型优化训练数据的联合分布概率;
判别模型优化训练数据的条件分布概率,判别模型与序列标记问题有较好的对应性。
(2)对于观察序列的处理不同
生成模型中,观察序列作为模型的一部分;
判别模型中,观察序列只作为条件,因此可以针对观察序列设计灵活的特征。
(3)训练复杂度不同
判别模型训练复杂度较高。
(4)是否支持无指导训练
生成模型支持无指导训练。
(5)本质区别
discriminative model 估计的是条件概率分布(conditional distribution)p(class|context)
generative model 估计的是联合概率分布(joint probability distribution)p()

另外,由生成模型可以得到判别模型,但由判别模型得不到生成模型。

对于跟踪算法

由于之前用Camshift方法做人脸的跟踪,这里看到了有关跟踪算法的说明,特此陈述一下。

跟踪算法一般来说可以分为两类:基于外观模型的生成模型或者基于外观模型的判别模型。
生成模型:一般是学习一个代表目标的模型,然后通过它去搜索图像区域,然后最小化重构误差。类似于生成模型描述一个目标,然后就是模式匹配了,在图像中找到和这个模型最匹配的区域,就是目标了。
判别模型:将跟踪问题看成一个二分类问题,然后找到目标和背景的决策边界。它不管目标是怎么描述的,那只要知道目标和背景的差别在哪,然后你给一个图像,它看它处于边界的那一边,就归为哪一类。

参考资料

统计学习方法 李航著,清华大学出版社
CSDN博客 生成模型与判别模型

转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(//www.greatytc.com/users/2bd9b48f6ea8/latest_articles)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容