单片机基础知识

单片机中常见电平

    TTL电平:一般用作数字芯片的电平,单片机大多是TTL电平,高电平+5V,低电平0V。不过通常是在某一个范围内为高,某一个范围内为低。例如以3.3V为界。有时输入与输出TTL的电平范围也不同。

      232电平:计算机串口电平,为负逻辑电平。高电平-12V,低电平+12V。

     USB:除去屏蔽层,有4根线,分别是VCC、GND和D+、D-两根信号线。5V是USB的电源电压,给USB device供电用的。信号线对于2.0, D+比D-大200mV时为1,D-比D+大200mV时为0,属差分信号,与TTL电平不兼容,信号传输时需要电平转换电路。

常见电平转换芯片

    USB转TTL芯片:CH340、PL2303、CP2102、FT232等。

    RS232转TTL芯片:MAX232、MAX3232、SP232等。

实物图

    通常RS-232接口以9个引脚(DB-9)或是25个引脚 (DB-25) 的型态出现,一般个人计算机上会有两组RS-232接口,分别称为 COM1 和 COM2。

RS232(9针)接口(DB9)
RS232(25针)接口(DB25)

    不过,现在个人计算机上大都转向USB接口。

单片机,最小系统

    对51系列单片机来说,最小系统一般应该包括:电源电路、晶振电路(振荡电路)和复位电路。

单片机最小系统

    电源电路:实现电平转换与单片机供电。

电源电路

       晶振电路:为单片机提供时钟。通常为晶振并联电路,电容一般为22P或33P。

晶振电路

    复位电路:分为高电平复位或低电平复位。程序跑飞或死机情况下可考虑复位。

复位电路

    图中复位电路由电容串联电阻构成,并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定。典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位。

GPIO与上下拉电阻

准双向IO

    上拉电阻就是将不确定的信号通过一个电阻拉到高电平,同时此电阻起到一个限流的作用。下拉电阻就是下拉到低电平。OC门要输出高电平,外部必须加上拉电阻。

    对于STC89C52来说,P0口作为IO使用时需要外加上拉电阻。而P1~P3口内部含有上拉电阻,称为准双向IO。

几个周期

    (1)时钟周期: 是指单片机提供时钟脉冲信号的振荡源的周期,也称为节拍(用P表示)。

    (2)状态周期: 每两个节拍称为一个状态(用S表示)。

    (3)机器周期: 一个机器周期包含 6 个状态周期S1~S6, 也就是 12 个时钟周期。 在一个机器周期内, CPU可以完成一个独立的操作。

    (4)指令周期: 它是指CPU完成一条操作所需的全部时间。 每条指令执行时间都是有一个或几个机器周期组成。MCS - 51 系统中, 有单周期指令、双周期指令和四周期指令。

常用晶振

    (1)11.0592MHz

晶振(11.0592MHz)

    标准的51单片机晶振是1.2M-12M,一般由于一个机器周期是12个时钟周期,所以先12M时,一个机器周期是1uS,好计算,而且速度相对是最高的。 

    11.0592M是因为在进行通信时,12M频率进行串行通信不容易实现标准的波特率,比如9600,4800,而11.0592M计算时正好可以得到,因此在有通信接口的单片机中,一般选11.0592M。

波特率初值

    可见11.0592晶振在常用波特率下没有误差。

    (2)32.768K

    时钟晶振常用32.768K的晶振。原因如下:

    系统如果采用外部晶振,以外部晶振为基础,有倍频或者分频获得其他的时钟频率。

2的15次方正好等于32768,因而很容易得到1S(1Hz)。

DS1302时钟模块
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 198,030评论 5 464
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,198评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,995评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,973评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,869评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,766评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,967评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,599评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,886评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,901评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,728评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,504评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,967评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,128评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,445评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,018评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,224评论 2 339

推荐阅读更多精彩内容