跟着Nature学作图:R语言ggplot2簇状柱形图完整示例

论文

A global reptile assessment highlights shared conservation needs of tetrapods

https://www.nature.com/articles/s41586-022-04664-7#Sec33

数据代码链接

https://github.com/j-marin/Global-reptile-assessment-

今天的推文学习一下推文中的Figure 3的簇状柱形图,没有找到论文中的作图代码,但是找到了原始数据集,有了原始数据集就可以自己写代码来做这个图

image.png

部分示例数据集

image.png

加载需要用到的R包

library(readxl)
library(ggplot2)
library(tidyverse)
library(patchwork)

Figure 3a

dat01<-read_excel("data/20220630/41586_2022_4664_MOESM4_ESM.xlsx",
                  sheet = "Fig 3a")

head(dat01)
dim(dat01)



dat01$Threat<-factor(dat01$Threat,
                     levels = dat01$Threat %>% unique())

ggplot(data=dat01,aes(x=Threat,y=n,fill=className))+
  geom_bar(stat="identity",position = "dodge")+
  theme_classic()+
  geom_vline(xintercept = 5.5,lty="dashed")+
  geom_vline(xintercept = 9.5,lty="dashed")+
  annotate(geom = "text",x=2.5,y=0.9,label="Habitat destruction")+
  annotate(geom = "text",x=7.5,y=0.9,label="Habitat change")+
  annotate(geom = "text",x=11,y=0.9,label="Other")+
  theme(legend.position = "bottom",
        axis.text.x = element_text(angle=60,hjust = 1,vjust = 1),
        legend.title = element_blank())+
  labs(x=NULL,y="Species threatened (%)")+
  scale_fill_manual(values = c("#936eaa","#401f51",
                               "#5f6798","#de6eaa"))+
  scale_y_continuous(labels = function(x){x*100}) -> p1

p1
image.png

Figure 3b

和Figure 3a是一样的,唯一的区别是配色不一样

dat02<-read_excel("data/20220630/41586_2022_4664_MOESM4_ESM.xlsx",
                  sheet = "Fig 3b")

head(dat02)
dim(dat02)

dat02$Threat<-factor(dat02$Threat,
                     levels = dat02$Threat %>% unique())

ggplot(data=dat02,aes(x=Threat,y=n,fill=className))+
  geom_bar(stat="identity",position = "dodge")+
  theme_classic()+
  geom_vline(xintercept = 5.5,lty="dashed")+
  geom_vline(xintercept = 9.5,lty="dashed")+
  annotate(geom = "text",x=2.5,y=0.9,label="Habitat destruction")+
  annotate(geom = "text",x=7.5,y=0.9,label="Habitat change")+
  annotate(geom = "text",x=11,y=0.9,label="Other")+
  theme(legend.position = "bottom",
        axis.text.x = element_text(angle=60,hjust = 1,vjust = 1),
        legend.title = element_blank())+
  labs(x=NULL,y="Species threatened (%)")+
  scale_fill_manual(values = c("#4868af","#e41f24",
                               "#edb91d","#973692"))+
  scale_y_continuous(labels = function(x){x*100}) -> p2

p2
image.png

最后是拼图

p1/p2 + plot_annotation(tag_levels = "a")
image.png
image.png

论文中的figure4也是簇状柱形图,感兴趣的可以自己试着复现一下

示例数据和代码可以自己到论文中获取,或者给本篇推文点赞,点击在看,然后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容