普通反爬虫机制的应对策略

转载自:http://mp.weixin.qq.com/s/eJF4PO1bl-j1EAW7TIGEfQ, 有删节

姓名:梅金波                        学号:16010110036

【嵌牛导读】爬虫与反爬虫,这相爱相杀的一对,简直可以写出一部壮观的斗争史。而在大数据时代,数据就是金钱,很多企业都为自己的网站运用了反爬虫机制,防止网页上的数据被爬虫爬走。然而,如果反爬机制过于严格,可能会误伤到真正的用户请求;如果既要和爬虫死磕,又要保证很低的误伤率,那么又会加大研发的成本。

【嵌牛鼻子】header检验, 限制IP请求数量, 动态加载。

【嵌牛提问】遇到简单的反爬虫机制时如何应对?

【嵌牛正文】简单低级的爬虫速度快,伪装度低,如果没有反爬机制,它们可以很快的抓取大量数据,甚至因为请求过多,造成服务器不能正常工作。而伪装度高的爬虫爬取速度慢,对服务器造成的负担也相对较小。所以,网站反爬的重点也是那种简单粗暴的爬虫,反爬机制也会允许伪装度高的爬虫,获得数据。毕竟伪装度很高的爬虫与真实用户也就没有太大差别了。

这篇文章主要讨论使用Scrapy框架时,如何应对普通的反爬机制。

header检验

最简单的反爬机制,就是检查HTTP请求的Headers信息,包括User-Agent, Referer、Cookies等。

User-Agent

User-Agent是检查用户所用客户端的种类和版本,在Scrapy中,通常是在下载器中间件中进行处理。比如在setting.py中建立一个包含很多浏览器User-Agent的列表,然后新建一个random_user_agent文件:

class RandomUserAgentMiddleware(object): 

    @classmethod 

    defprocess_request(cls, request, spider): 

        ua = random.choice(spider.settings['USER_AGENT_LIST']) 

        if ua:                   

            request.headers.setdefault('User-Agent', ua)

这样就可以在每次请求中,随机选取一个真实浏览器的User-Agent。

Referer

Referer是检查此请求由哪里来,通常可以做图片的盗链判断。在Scrapy中,如果某个页面url是通过之前爬取的页面提取到,Scrapy会自动把之前爬取的页面url作为Referfer。也可以通过上面的方式自己定义Referfer字段。

Cookies

网站可能会检测Cookie中session_id的使用次数,如果超过限制,就触发反爬策略。所以可以在Scrapy中设置 COOKIES_ENABLED = False 让请求不带Cookies。

也有网站强制开启Cookis,这时就要麻烦一点了。可以另写一个简单的爬虫,定时向目标网站发送不带Cookies的请求,提取响应中Set-cookie字段信息并保存。爬取网页时,把存储起来的Cookies带入Headers中。

X-Forwarded-For

在请求头中添加X-Forwarded-For字段,将自己申明为一个透明的代理服务器,一些网站对代理服务器会手软一些。

X-Forwarded-For头一般格式如下

X-Forwarded-For: client1, proxy1, proxy2

这里将client1,proxy1设置为随机IP地址,把自己的请求伪装成代理的随机IP产生的请求。然而由于X-Forwarded-For可以随意篡改,很多网站并不会信任这个值。

限制IP的请求数量

如果某一IP的请求速度过快,就触发反爬机制。当然可以通过放慢爬取速度绕过,这要以爬取时间大大增长为代价。另一种方法就是添加代理。

很简单,在下载器中间件中添加:

request.meta['proxy'] = 'http://' + 'proxy_host' + ':' + proxy_port

然后再每次请求时使用不同的代理IP。然而问题是如何获取大量的代理IP?

可以自己写一个IP代理获取和维护系统,定时从各种披露免费代理IP的网站爬取免费IP代理,然后定时扫描这些IP和端口是否可用,将不可用的代理IP及时清理。这样就有一个动态的代理库,每次请求再从库中随机选择一个代理。然而这个方案的缺点也很明显,开发代理获取和维护系统本身就很费时费力,并且这种免费代理的数量并不多,而且稳定性都比较差。如果必须要用到代理,也可以去买一些稳定的代理服务。这些服务大多会用到带认证的代理。

在requests库中添加带认证的代理很简单,

proxies = {    "http": "http://user:pass@10.10.1.10:3128/", }

然而Scrapy不支持这种认证方式,需要将认证信息base64编码后,加入Headers的Proxy-Authorization字段:

import base64 

# Set the location of the proxy 

proxy_string = choice(self._get_proxies_from_file('proxies.txt')) 

# user:pass@ip:port 

proxy_items = proxy_string.split('@') 

request.meta['proxy'] = "http://%s" % proxy_items[1] 

# setup basic authentication for the proxy 

user_pass=base64.encodestring(proxy_items[0]) 

request.headers['Proxy-Authorization'] = 'Basic ' + user_pass 

动态加载

现在越来越多的网站使用ajax动态加载内容,这时候可以先截取ajax请求分析一下,有可能根据ajax请求构造出相应的API请求的URL就可以直接获取想要的内容,通常是json格式,反而还不用去解析HTML。

然而,很多时候ajax请求都会经过后端鉴权,不能直接构造URL获取。这时就可以通过PhantomJS+Selenium模拟浏览器行为,抓取经过js渲染后的页面。

需要注意的是,使用Selenium后,请求不再由Scrapy的Downloader执行,所以之前添加的请求头等信息都会失效,需要在Selenium中重新添加

headers = {...}   

for key, valuein headers.iteritems():   

    webdriver.DesiredCapabilities.PHANTOMJS['phantomjs.page.customHeaders.{}'.format(key)] = value

另外,调用PhantomJs需要指定PhantomJs的可执行文件路径,通常是将该路径添加到系统的path路径,让程序执行时自动去path中寻找。我们的爬虫经常会放到crontab中定时执行,而crontab中的环境变量和系统的环境变量不同,所以就加载不到PhamtonJs需要的路径,所以最好是在申明时指定路径:

driver = webdriver.PhantomJS(executable_path='/usr/local/bin/phantomjs')

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容