FSL_FAST

参考:FSL里的FAST核磁数据处理: FSL系列之segmentation工具FASTfslwiki_FASTFSL-Introduction
相关文档:FSL Structural Segmentation ☆☆☆☆☆

The various output images are:

  • Partial volume maps: A (non-binary) partial volume image for each class, where each voxel contains a value in the range 0-1 that represents the proportion of that class's tissue present in that voxel. This is the default output. 局部体积图:每个类别的(非二进制)局部体积图像,其中每个体素包含0-1范围内的值,该值表示该体素中该类别组织的比例。 这是默认输出。
# Partial volume maps  (Default)
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below:
sample-001_brain_fast_mixeltype.nii.gz
sample-001_brain_fast_pve_0.nii.gz
sample-001_brain_fast_pve_1.nii.gz
sample-001_brain_fast_pve_2.nii.gz
sample-001_brain_fast_pveseg.nii.gz
sample-001_brain_fast_seg.nii.gz
  • Binary segmentation: single image: This is the "hard" (binary) segmentation, where each voxel is classified into only one class. A single image contains all the necessary information, with the first class taking intensity value 1 in the image, etc. 二进制分割:单个图像:这是“硬”(二进制)分割,其中每个体素仅分类为一类。 一幅图像包含所有必要的信息,第一类图像中的强度值为1,依此类推。
# pure
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve 
-o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast 
/home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below:
sample-001_brain_fast_seg.nii.gz 
  • Binary segmentation: One image per class: This is also a hard segmentation output; the difference is that there is one output image per class, and values are only either 0 or 1. 二进制分割:每类一张图像:这也是硬分割输出; 区别在于每个类只有一个输出图像,并且值仅为0或1。
# Binary segmentation: Also output one image per class
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -g --nopve 
-o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast 
/home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below: (White matter、Gray matter、CSF)
sample-001_brain_fast_seg.nii.gz
sample-001_brain_fast_seg_0.nii.gz
sample-001_brain_fast_seg_1.nii.gz
sample-001_brain_fast_seg_2.nii.gz
  • Restored input: This is the estimated restored input image after correction for bias field. 恢复的输入:这是在对偏差字段进行校正后估计的恢复的输入图像。
# Restored input
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve -B -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below:
sample-001_brain_fast_restore.nii.gz
sample-001_brain_fast_seg.nii.gz
  • Bias field: This is the estimated bias field. 偏差字段:这是估计的偏差字段。
# Estimated Bias field
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve -b -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below:
sample-001_brain_fast_bias.nii.gz
sample-001_brain_fast_seg.nii.gz

Advanced Options

  • Bias field iterations determines the number of passes made during the initial bias field estimation stage. A greater number of iterations can help esitmate particularly strong bias fields. 偏置场迭代确定了初始偏置场估计阶段的通过次数。大量的迭代可以帮助确定特别强的偏置场。
  • Bias field smoothing controls the amount of smoothness expected in the estimated bias field. The value entered is the Full-Width Half-Maximum (FWHM) in mm. A larger value here will impose more smoothness on the estimated bias field. 偏置场平滑控制估计的偏置场中期望的平滑度。输入的值为以毫米为单位的全宽半最大值(FWHM)。此处较大的值将对估计的偏置场施加更大的平滑度。
  • Use a-priori probability maps tells FAST to start by registering the input image to standard space and then use standard tissue-type probability maps (from the MNI152 dataset) instead of the initial K-means segmentation, in order to estimate the initial parameters of the classes. This can help in cases where there is very bad bias field. By default the a-priori probability maps are only used to initialise the segmentation; however, you can also optionally tell FAST to use these priors in the final segmentation - this can help, for example, with the segmentation of deep grey structures. 使用先验概率图告诉FAST首先将输入图像注册到标准空间,然后使用标准组织类型概率图(来自MNI152数据集)代替初始K均值分割,以便估算类。这在偏置场非常差的情况下可以提供帮助。默认情况下,先验概率图仅用于初始化分割。但是,您也可以选择告诉FAST在最终的细分中使用这些先验-例如,这可以帮助细分深灰色结构。
  • Use file of initial tissue-type means tells FAST to use a text file with mean intensity values (separated by newlines) for the starting mean values of the different classes to be segmented. This is then used instead of the automated K-means starting parameter estimation. 初始组织类型均值的使用文件告诉FAST使用具有平均强度值(用换行符分隔)的文本文件作为要分割的不同类别的起始均值。然后使用它代替自动K均值开始参数估计

# Partial volume maps  (Default)
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -o 
/home/captain/Desktop/7_30_fsl/sample-001_brain_fast 
/home/captain/Desktop/7_30_fsl/sample-001_brain

# output the files as below:
sample-001_brain_fast_mixeltype.nii.gz
sample-001_brain_fast_pve_0.nii.gz
sample-001_brain_fast_pve_1.nii.gz
sample-001_brain_fast_pve_2.nii.gz
sample-001_brain_fast_pveseg.nii.gz
sample-001_brain_fast_seg.nii.gz

常用参数:
-S or --channels= 图像通道数, 通常设为1
-t or --type= 图像种类, T1的话设置为1, T2设置为2, PD设置为3 Type of image (e.g. T1, T2, PD) - Note space in fast4 version e.g. t 2 not t2 → Fast3
-o or --out= 输出文件的基本名称,生成的文件会自动附上后缀, 例如seg, pve_0, pve_1等.
-n or --class= 组织类型数.T1的话通常设置为3, (Grey Matter, White Matter and CSF) T2的话通常设置为4. 如果图像很不清晰, 可以设置为2.
-b 输出的估计偏置场(estimated bias field)
-B 输出偏置图像并保存(bias-corrected image)
-l or –lowpass= 偏置场平滑, m是FWHM, 单位是mm, m ≅ 2 √n
-I 或者 –iter 循环次数


  • ADNI_023_S_1190_FDG.nii(左)原始数据
  • ADNI_023_S_1190_FDG_brain.nii (右)去除颅骨

  • ADNI_023_S_1190_FDG_brain_pve_0.nii(左)脑脊液
  • ADNI_023_S_1190_FDG_brain_pve_1.nii(中)灰质
  • ADNI_023_S_1190_FDG_brain_pve_2.nii(右)白质
    注:partial volume (PVE)

  • ADNI_023_S_1190_FDG_brain_mixeltype.nii (左)
  • ADNI_023_S_1190_FDG_brain_pveseg.nii(中)
  • ADNI_023_S_1190_FDG_brain_seg.nii(右)(= *_pveseg.nii)


ADNI_023_S_1190_FDG_brain_pveseg.nii:(Advanced Options)

  • no Use a-priori probability maps for initiallsation; no and for final segmentation (左)
  • Use a-priori probability maps for initiallsation; no and for final segmentation (中)
  • Use a-priori probability maps for initiallsation; and for final segmentation (右)

ADNI_023_S_1190_FDG_brain_pveseg.nii:(Advanced Options)

  • Bias field smoothing (FWHM in mm) :20.0 (左) 默认值,较优
  • Bias field smoothing (FWHM in mm) :8.0 (右)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容