参考:FSL里的FAST、核磁数据处理: FSL系列之segmentation工具FAST、fslwiki_FAST、FSL-Introduction
相关文档:FSL Structural Segmentation ☆☆☆☆☆
The various output images are:
- Partial volume maps: A (non-binary) partial volume image for each class, where each voxel contains a value in the range 0-1 that represents the proportion of that class's tissue present in that voxel. This is the default output. 局部体积图:每个类别的(非二进制)局部体积图像,其中每个体素包含0-1范围内的值,该值表示该体素中该类别组织的比例。 这是默认输出。
# Partial volume maps (Default)
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below:
sample-001_brain_fast_mixeltype.nii.gz
sample-001_brain_fast_pve_0.nii.gz
sample-001_brain_fast_pve_1.nii.gz
sample-001_brain_fast_pve_2.nii.gz
sample-001_brain_fast_pveseg.nii.gz
sample-001_brain_fast_seg.nii.gz
- Binary segmentation: single image: This is the "hard" (binary) segmentation, where each voxel is classified into only one class. A single image contains all the necessary information, with the first class taking intensity value 1 in the image, etc. 二进制分割:单个图像:这是“硬”(二进制)分割,其中每个体素仅分类为一类。 一幅图像包含所有必要的信息,第一类图像中的强度值为1,依此类推。
# pure
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve
-o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast
/home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below:
sample-001_brain_fast_seg.nii.gz
- Binary segmentation: One image per class: This is also a hard segmentation output; the difference is that there is one output image per class, and values are only either 0 or 1. 二进制分割:每类一张图像:这也是硬分割输出; 区别在于每个类只有一个输出图像,并且值仅为0或1。
# Binary segmentation: Also output one image per class
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -g --nopve
-o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast
/home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below: (White matter、Gray matter、CSF)
sample-001_brain_fast_seg.nii.gz
sample-001_brain_fast_seg_0.nii.gz
sample-001_brain_fast_seg_1.nii.gz
sample-001_brain_fast_seg_2.nii.gz
- Restored input: This is the estimated restored input image after correction for bias field. 恢复的输入:这是在对偏差字段进行校正后估计的恢复的输入图像。
# Restored input
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve -B -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below:
sample-001_brain_fast_restore.nii.gz
sample-001_brain_fast_seg.nii.gz
- Bias field: This is the estimated bias field. 偏差字段:这是估计的偏差字段。
# Estimated Bias field
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 --nopve -b -o /home/captain/Desktop/7_30_fsl/sample-001_brain_fast /home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below:
sample-001_brain_fast_bias.nii.gz
sample-001_brain_fast_seg.nii.gz
Advanced Options
-
Bias field iterations determines the number of passes made during the initial bias field estimation stage. A greater number of iterations can help esitmate particularly strong bias fields. 偏置场迭代确定了初始偏置场估计阶段的通过次数。
大量的迭代可以帮助确定特别强的偏置场。
-
Bias field smoothing controls the amount of smoothness expected in the estimated bias field. The value entered is the Full-Width Half-Maximum (FWHM) in mm. A larger value here will impose more smoothness on the estimated bias field. 偏置场平滑控制估计的偏置场中
期望的平滑度
。输入的值为以毫米为单位的全宽半最大值(FWHM)。此处较大的值将对估计的偏置场施加更大的平滑度。 -
Use a-priori probability maps tells FAST to start by registering the input image to standard space and then use standard tissue-type probability maps (from the MNI152 dataset) instead of the initial K-means segmentation, in order to estimate the initial parameters of the classes. This can help in cases where there is very bad bias field. By default the a-priori probability maps are only used to initialise the segmentation; however, you can also optionally tell FAST to use these priors in the final segmentation - this can help, for example, with the segmentation of deep grey structures. 使用
先验概率图
告诉FAST首先将输入图像注册到标准空间,然后使用标准组织类型概率图(来自MNI152数据集)代替初始K均值分割,以便估算类。这在偏置场非常差的情况下可以提供帮助。
默认情况下,先验概率图仅用于初始化分割。但是,您也可以选择告诉FAST在最终的细分中使用这些先验
-例如,这可以帮助细分深灰色结构。 -
Use file of initial tissue-type means tells FAST to use a text file with mean intensity values (separated by newlines) for the starting mean values of the different classes to be segmented. This is then used instead of the automated K-means starting parameter estimation. 初始组织类型均值的使用文件告诉FAST使用具有平均强度值(用换行符分隔)的
文本文件
作为要分割的不同类别的起始均值。然后使用它代替自动K均值开始参数估计
。
# Partial volume maps (Default)
/usr/share/fsl/5.0/bin/fast -t 1 -n 3 -H 0.1 -I 4 -l 20.0 -o
/home/captain/Desktop/7_30_fsl/sample-001_brain_fast
/home/captain/Desktop/7_30_fsl/sample-001_brain
# output the files as below:
sample-001_brain_fast_mixeltype.nii.gz
sample-001_brain_fast_pve_0.nii.gz
sample-001_brain_fast_pve_1.nii.gz
sample-001_brain_fast_pve_2.nii.gz
sample-001_brain_fast_pveseg.nii.gz
sample-001_brain_fast_seg.nii.gz
常用参数:
-S or --channels= 图像通道数, 通常设为1
-t or --type= 图像种类, T1的话设置为1, T2设置为2, PD设置为3 Type of image (e.g. T1, T2, PD) - Note space in fast4 version e.g. t 2 not t2 → Fast3
-o or --out= 输出文件的基本名称,生成的文件会自动附上后缀, 例如seg, pve_0, pve_1等.
-n or --class= 组织类型数.T1的话通常设置为3, (Grey Matter, White Matter and CSF) T2的话通常设置为4. 如果图像很不清晰, 可以设置为2.
-b 输出的估计偏置场(estimated bias field)
-B 输出偏置图像并保存(bias-corrected image)
-l or –lowpass= 偏置场平滑, m是FWHM, 单位是mm, m ≅ 2 √n
-I 或者 –iter 循环次数
- ADNI_023_S_1190_FDG.nii(左)原始数据
- ADNI_023_S_1190_FDG_brain.nii (右)去除颅骨
- ADNI_023_S_1190_FDG_brain_pve_0.nii(左)脑脊液
- ADNI_023_S_1190_FDG_brain_pve_1.nii(中)灰质
- ADNI_023_S_1190_FDG_brain_pve_2.nii(右)白质
注:partial volume (PVE)
- ADNI_023_S_1190_FDG_brain_mixeltype.nii (左)
- ADNI_023_S_1190_FDG_brain_pveseg.nii(中)
- ADNI_023_S_1190_FDG_brain_seg.nii(右)(= *_pveseg.nii)
ADNI_023_S_1190_FDG_brain_pveseg.nii:(Advanced Options)
-
no
Use a-priori probability maps for initiallsation;no
and for final segmentation (左) -
√
Use a-priori probability maps for initiallsation;no
and for final segmentation (中) -
√
Use a-priori probability maps for initiallsation;√
and for final segmentation (右)
ADNI_023_S_1190_FDG_brain_pveseg.nii:(Advanced Options)
- Bias field smoothing (FWHM in mm) :20.0 (左) 默认值,较优
- Bias field smoothing (FWHM in mm) :8.0 (右)