ES 干货| Elasticsearch 7.x Nested 嵌套类型查询

一、什么是 ES Nested 嵌套

Elasticsearch 有很多数据类型,大致如下:

基本数据类型:

string 类型。ES 7.x 中,string 类型会升级为:text 和 keyword。keyword 可以排序;text 默认分词,不可以排序。

数据类型:integer、long 等

时间类型、布尔类型、二进制类型、区间类型等

复杂数据类型:

数组类型:Array

对象类型:Object

Nested 类型

特定数据类型:地理位置、IP 等

注意:tring/nested/array 类型字段不能用作排序字段。因此 string 类型会升级为:text 和 keyword。keyword 可以排序,text 默认分词,不可以排序。

2.1 那什么是 Nested 类型?

Elasticsearch 7.x 文档中,这样写到:

The nested type is a specialised version of the object datatype that allows arrays of objects to be indexed in a way that they can be queried independently of each other.

Nested (嵌套)类型,是特殊的对象类型,特殊的地方是索引对象数组方式不同,允许数组中的对象各自地进行索引。目的是对象之间彼此独立被查询出来。

2.2 如何使用 Nested 类型?

在 ES 的 my_index 索引中存储 users 字段。比如说:

{

  "group" : "fans",

  "users" : [

    {

      "name" : "John",

      "age" :  "23"

    },

    {

      "name" : "Alice",

      "age" :  "18"

    }

  ]

}

其实存储看上去跟 Object 类型一样,只不过底层原理对数组 users 字段索引方式不同。设置 users 字段的索引方式 Nested 嵌套类型:

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'

{

  "mappings": {

    "properties": {

      "users": {

        "type": "nested"

      }

    }

  }

}

'

二、Nested Query 应用场景或案例

比如小老弟我有一波小粉丝,users 字段类型是 object。存储如下:

{

  "group" : "bysocket_fans",

  "users" : [

    {

      "name" : "John",

      "age" :  "23"

    },

    {

      "name" : "Alice",

      "age" :  "18"

    }

  ]

}

{

  "group" : "路人甲_fans",

  "users" : [

    {

      "name" : "Alice",

      "age" :  "22"

    },

    {

      "name" : "Jeff",

      "age" :  "18"

    }

  ]

}

比如 18 岁大姑娘 Alice 是小老弟我的粉丝,她也可能是周杰伦的粉丝。那这边就有一个需求,即应用场景:

如何找到 18 岁大姑娘 Alice {"name" : "Alice","age" :  "18"} 关注的所有明星呢?

如果用老的查询语句是这样搜索的:

GET /my_index/_search?pretty

{

  "query": {

    "bool": {

      "must": [

        {

          "match": {

            "users.name": "Alice"

          }

        },

        {

          "match": {

            "users.age": 18

          }

        }

      ]

    }

  }

}

结果发现结果是不对的,路人甲 这条记录也出现了。因为匹配到了第一个 Alice + 第二个 Jeff 的 18。所以这种查询不满足这个场景

那么需要使用 Nested 类型并用 Nested 查询,即让数组中的对象各自地进行索引。目的是对象之间彼此独立被查询出来。

三、Nested Query 实战

3.1 设置 Nested 类型

根据 2.2 如何使用 Nested 类型,将 users 字段类型从 object 修改为 nested:

curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'

{

  "mappings": {

    "properties": {

      "users": {

        "type": "nested"

      }

    }

  }

}

'

3.2 Nested Query

修改后,对应的 Nested Query ,如下:

GET /my_index/_search?pretty

{

  "query": {

    "bool": {

      "must": [

        {

          "nested": {

            "path": "users",

            "query": {

              "bool": {

                "must": [

                  {

                    "match": {

                      "users.name": "Alice"

                    }

                  },

                  {

                    "match": {

                      "users.age": 18

                    }

                  }

                ]

              }

            }

          }

        }

      ]

    }

  }

}

语法很简单就是:

key 以 "nested" 开头

path 就是嵌套对象数组的字段名

其他

scoremode (可选的)匹配子对象的分数相关性分数。avg (默认,使用所有匹配子对象的平均相关性分数)

ignoreunmapped (可选的)是否忽略 path 未映射,不返回任何文档而不是错误。默认为 false,如果 path 不对就报错

这样查询得结果就是对的。

四、Nested Query 性能

这边测试过,给大家一个测试报告和建议。

压测环境:3 个 server ,6 个 ES 节点

压测结论:使用上小节查询语句,50 并发情况下,导致千兆网卡被打满了。TPS 4000 左右,如果提高并发,就会增加 RT。所以如果高性能大流量情况下,必须用 Nested 应该从网络流量方向进行优化。二者,尽量减少大数据对象的返回

建议:泥瓦匠建议,你听听看

性能:Common Query 远远大于 Nested Query 远远大于 Parent/Child Query

性能优化:首先考虑减少后面两种 Query

性能优化:Nested Query 业务可以优化下。比如上一小节完全可以多存一个 fanIds 数组。搜索两次,第一次查确定 18 岁大姑娘 Alice 的 fanId,第二次根据 fanId 搜索即可

性能优化:实在没办法,高性能大流量情况下,必须用 Nested 应该从网络流量方向进行优化。二者,尽量减少大数据对象的返回

源网络,版权归原创者所有。如有侵权烦请告知,我们会立即删除并表示歉意。



更多技术,欢迎关注下方公众号

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容