常见数据结构与算法整理总结(上)

程序君 程序员大咖 3天前

作者丨尘语凡心

//www.greatytc.com/p/230e6fde9c75

数据结构是以某种形式将数据组织在一起的集合,它不仅存储数据,还支持访问和处理数据的操作。算法是为求解一个问题需要遵循的、被清楚指定的简单指令的集合。下面是自己整理的常用数据结构与算法相关内容,如有错误,欢迎指出。

一、线性表

1.数组实现

2.链表

二、栈与队列

三、树与二叉树

1.树

2.二叉树基本概念

3.二叉查找树

4.平衡二叉树

5.红黑树

四、图

五、总结

一、线性表

线性表是最常用且最简单的一种数据结构,它是n个数据元素的有限序列。

实现线性表的方式一般有两种,一种是使用数组存储线性表的元素,即用一组连续的存储单元依次存储线性表的数据元素。另一种是使用链表存储线性表的元素,即用一组任意的存储单元存储线性表的数据元素(存储单元可以是连续的,也可以是不连续的)。

数组实现

数组是一种大小固定的数据结构,对线性表的所有操作都可以通过数组来实现。虽然数组一旦创建之后,它的大小就无法改变了,但是当数组不能再存储线性表中的新元素时,我们可以创建一个新的大的数组来替换当前数组。这样就可以使用数组实现动态的数据结构。

代码1  创建一个更大的数组来替换当前数组

int[] oldArray =newint[10];

int[] newArray =newint[20];

for(inti =0; i < oldArray.length; i++) {

newArray[i] = oldArray[i];

}

// 也可以使用System.arraycopy方法来实现数组间的复制     

// System.arraycopy(oldArray, 0, newArray, 0, oldArray.length);

oldArray = newArray;

代码2 在数组位置index上添加元素e

//oldArray 表示当前存储元素的数组

//size 表示当前元素个数

publicvoidadd(intindex,inte){

if(index > size || index <0) {

System.out.println("位置不合法...");

}

//如果数组已经满了 就扩容

if(size >= oldArray.length) {

// 扩容函数可参考代码1

}

for(inti = size -1; i >= index; i--) {

oldArray[i +1] = oldArray[i];

}

//将数组elementData从位置index的所有元素往后移一位

// System.arraycopy(oldArray, index, oldArray, index + 1,size - index);

oldArray[index] = e;

size++;

}

上面简单写出了数组实现线性表的两个典型函数,具体我们可以参考Java里面的ArrayList集合类的源码。数组实现的线性表优点在于可以通过下标来访问或者修改元素,比较高效,主要缺点在于插入和删除的花费开销较大,比如当在第一个位置前插入一个元素,那么首先要把所有的元素往后移动一个位置。为了提高在任意位置添加或者删除元素的效率,可以采用链式结构来实现线性表。

链表

链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列节点组成,这些节点不必在内存中相连。每个节点由数据部分Data和链部分Next,Next指向下一个节点,这样当添加或者删除时,只需要改变相关节点的Next的指向,效率很高。

单链表的结构

下面主要用代码来展示链表的一些基本操作,需要注意的是,这里主要是以单链表为例,暂时不考虑双链表和循环链表。

代码3 链表的节点

classNode{

E item;

Node next;

//构造函数

Node(E element) {

this.item = element;

this.next =null;

}

}

代码4 定义好节点后,使用前一般是对头节点和尾节点进行初始化

//头节点和尾节点都为空 链表为空

Node head =null;

Node tail =null;

代码5 空链表创建一个新节点

//创建一个新的节点 并让head指向此节点

head = new Node("nodedata1");

//让尾节点也指向此节点

tail = head;

代码6 链表追加一个节点

//创建新节点 同时和最后一个节点连接起来

tail.next =newNode("node1data2");

//尾节点指向新的节点

tail = tail.next;

代码7 顺序遍历链表

Node current = head;

while(current !=null) {

System.out.println(current.item);

current = current.next;

}

代码8 倒序遍历链表

staticvoidprintListRev(Node<String> head){

//倒序遍历链表主要用了递归的思想

if(head !=null) {

printListRev(head.next);

System.out.println(head.item);

}

}

代码 单链表反转

//单链表反转 主要是逐一改变两个节点间的链接关系来完成

staticNode revList(Node head) {

if(head ==null) {

returnnull;

}

Node nodeResult =null;

Node nodePre =null;

Node current = head;

while(current !=null) {

Node nodeNext = current.next;

if(nodeNext ==null) {

nodeResult = current;

}

current.next = nodePre;

nodePre = current;

current = nodeNext;

}

returnnodeResult;

}

上面的几段代码主要展示了链表的几个基本操作,还有很多像获取指定元素,移除元素等操作大家可以自己完成,写这些代码的时候一定要理清节点之间关系,这样才不容易出错。

链表的实现还有其它的方式,常见的有循环单链表,双向链表,循环双向链表。 循环单链表 主要是链表的最后一个节点指向第一个节点,整体构成一个链环。 双向链表 主要是节点中包含两个指针部分,一个指向前驱元,一个指向后继元,JDK中LinkedList集合类的实现就是双向链表。** 循环双向链表** 是最后一个节点指向第一个节点。

二、栈与队列

栈和队列也是比较常见的数据结构,它们是比较特殊的线性表,因为对于栈来说,访问、插入和删除元素只能在栈顶进行,对于队列来说,元素只能从队列尾插入,从队列头访问和删除。

栈是限制插入和删除只能在一个位置上进行的表,该位置是表的末端,叫作栈顶,对栈的基本操作有push(进栈)和pop(出栈),前者相当于插入,后者相当于删除最后一个元素。栈有时又叫作LIFO(Last In First Out)表,即后进先出。

栈的模型

下面我们看一道经典题目,加深对栈的理解。

关于栈的一道经典题目

上图中的答案是C,其中的原理可以好好想一想。

因为栈也是一个表,所以任何实现表的方法都能实现栈。我们打开JDK中的类Stack的源码,可以看到它就是继承类Vector的。当然,Stack是Java2前的容器类,现在我们可以使用LinkedList来进行栈的所有操作。

队列

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。

队列示意图

我们可以使用链表来实现队列,下面代码简单展示了利用LinkedList来实现队列类。

代码9 简单实现队列类

publicclassMyQueue {

privateLinkedListlist=newLinkedList<>();

// 入队

publicvoidenqueue(E e){

list.addLast(e);

}

// 出队

publicEdequeue(){

returnlist.removeFirst();

}

}

普通的队列是一种先进先出的数据结构,而优先队列中,元素都被赋予优先级。当访问元素的时候,具有最高优先级的元素最先被删除。优先队列在生活中的应用还是比较多的,比如医院的急症室为病人赋予优先级,具有最高优先级的病人最先得到治疗。在Java集合框架中,类PriorityQueue就是优先队列的实现类,具体大家可以去阅读源码。

三、树与二叉树

树型结构是一类非常重要的非线性数据结构,其中以树和二叉树最为常用。在介绍二叉树之前,我们先简单了解一下树的相关内容。

** 树 是由n(n>=1)个有限节点组成一个具有层次关系的集合。它具有以下特点:每个节点有零个或多个子节点;没有父节点的节点称为 根 节点;每一个非根节点有且只有一个 父节点 **;除了根节点外,每个子节点可以分为多个不相交的子树。

树的结构

二叉树基本概念

定义

二叉树是每个节点最多有两棵子树的树结构。通常子树被称作“左子树”和“右子树”。二叉树常被用于实现二叉查找树和二叉堆。

相关性质

二叉树的每个结点至多只有2棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。

二叉树的第i层至多有2(i-1)个结点;深度为k的二叉树至多有2k-1个结点。

一棵深度为k,且有2^k-1个节点的二叉树称之为** 满二叉树 **;

深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为** 完全二叉树 **。

三种遍历方法

在二叉树的一些应用中,常常要求在树中查找具有某种特征的节点,或者对树中全部节点进行某种处理,这就涉及到二叉树的遍历。二叉树主要是由3个基本单元组成,根节点、左子树和右子树。如果限定先左后右,那么根据这三个部分遍历的顺序不同,可以分为先序遍历、中序遍历和后续遍历三种。

(1) 先序遍历 若二叉树为空,则空操作,否则先访问根节点,再先序遍历左子树,最后先序遍历右子树。 (2) 中序遍历 若二叉树为空,则空操作,否则先中序遍历左子树,再访问根节点,最后中序遍历右子树。(3) 后序遍历 若二叉树为空,则空操作,否则先后序遍历左子树访问根节点,再后序遍历右子树,最后访问根节点。

给定二叉树写出三种遍历结果

树和二叉树的区别

(1) 二叉树每个节点最多有2个子节点,树则无限制。 (2) 二叉树中节点的子树分为左子树和右子树,即使某节点只有一棵子树,也要指明该子树是左子树还是右子树,即二叉树是有序的。 (3) 树决不能为空,它至少有一个节点,而一棵二叉树可以是空的。

上面我们主要对二叉树的相关概念进行了介绍,下面我们将从二叉查找树开始,介绍二叉树的几种常见类型,同时将之前的理论部分用代码实现出来

二叉查找树

定义

二叉查找树就是二叉排序树,也叫二叉搜索树。二叉查找树或者是一棵空树,或者是具有下列性质的二叉树:

 (1) 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

(2) 若右子树不空,则右子树上所有结点的值均大于它的根结点的值;

(3) 左、右子树也分别为二叉排序树;

(4) 没有键值相等的结点。

典型的二叉查找树的构建过程

性能分析

对于二叉查找树来说,当给定值相同但顺序不同时,所构建的二叉查找树形态是不同的,下面看一个例子。

不同形态平衡二叉树的ASL不同

可以看到,含有n个节点的二叉查找树的平均查找长度和树的形态有关。最坏情况下,当先后插入的关键字有序时,构成的二叉查找树蜕变为单支树,树的深度为n,其平均查找长度(n+1)/2(和顺序查找相同),最好的情况是二叉查找树的形态和折半查找的判定树相同,其平均查找长度和log2(n)成正比。平均情况下,二叉查找树的平均查找长度和logn是等数量级的,所以为了获得更好的性能,通常在二叉查找树的构建过程需要进行“平衡化处理”,之后我们将介绍平衡二叉树和红黑树,这些均可以使查找树的高度为O(log(n))。

代码10 二叉树的节点

classTreeNode {

E element;

TreeNode left;

TreeNode right;

publicTreeNode(E e){

element = e;

}

}

二叉查找树的三种遍历都可以直接用递归的方法来实现:

代码12 先序遍历

protectedvoidpreorder(TreeNode<E> root){

if(root ==null)

return;

System.out.println(root.element +" ");

preorder(root.left);

preorder(root.right);

}

代码13 中序遍历

protectedvoidinorder(TreeNode<E> root){

if(root ==null)

return;

inorder(root.left);

System.out.println(root.element +" ");

inorder(root.right);

}

代码14 后序遍历

protectedvoidpostorder(TreeNode<E> root){

if(root ==null)

return;

postorder(root.left);

postorder(root.right);

System.out.println(root.element +" ");

}

代码15 二叉查找树的简单实现

/**

*@authorJackalTsc

*/

publicclassMyBinSearchTree>{

// 根

privateTreeNode root;

// 默认构造函数

publicMyBinSearchTree(){

}

// 二叉查找树的搜索

publicbooleansearch(E e){

TreeNode current = root;

while(current !=null) {

if(e.compareTo(current.element) <0) {

current = current.left;

}elseif(e.compareTo(current.element) >0) {

current = current.right;

}else{

returntrue;

}

}

returnfalse;

}

// 二叉查找树的插入

publicbooleaninsert(E e){

// 如果之前是空二叉树 插入的元素就作为根节点

if(root ==null) {

root = createNewNode(e);

}else{

// 否则就从根节点开始遍历 直到找到合适的父节点

TreeNode parent =null;

TreeNode current = root;

while(current !=null) {

if(e.compareTo(current.element) <0) {

parent = current;

current = current.left;

}elseif(e.compareTo(current.element) >0) {

parent = current;

current = current.right;

}else{

returnfalse;

}

}

// 插入

if(e.compareTo(parent.element) <0) {

parent.left = createNewNode(e);

}else{

parent.right = createNewNode(e);

}

}

returntrue;

}

// 创建新的节点

protectedTreeNodecreateNewNode(E e){

returnnewTreeNode(e);

}

}

// 二叉树的节点

classTreeNode>{

E element;

TreeNode left;

TreeNode right;

publicTreeNode(E e){

element = e;

}

}

上面的代码15主要展示了一个自己实现的简单的二叉查找树,其中包括了几个常见的操作,当然更多的操作还是需要大家自己去完成。因为在二叉查找树中删除节点的操作比较复杂,所以下面我详细介绍一下这里。

二叉查找树中删除节点分析

要在二叉查找树中删除一个元素,首先需要定位包含该元素的节点,以及它的父节点。假设current指向二叉查找树中包含该元素的节点,而parent指向current节点的父节点,current节点可能是parent节点的左孩子,也可能是右孩子。这里需要考虑两种情况:

current节点没有左孩子,那么只需要将patent节点和current节点的右孩子相连。

current节点有一个左孩子,假设rightMost指向包含current节点的左子树中最大元素的节点,而parentOfRightMost指向rightMost节点的父节点。那么先使用rightMost节点中的元素值替换current节点中的元素值,将parentOfRightMost节点和rightMost节点的左孩子相连,然后删除rightMost节点。

// 二叉搜索树删除节点

publicboolean delete(E e) {

TreeNodeparent=null;

TreeNode current = root;

// 找到要删除的节点的位置

while(current !=null) {

if(e.compareTo(current.element) <0) {

parent= current;

current = current.left;

}elseif(e.compareTo(current.element) >0) {

parent= current;

current = current.right;

}else{

break;

}

}

// 没找到要删除的节点

if(current ==null) {

returnfalse;

}

// 考虑第一种情况

if(current.left ==null) {

if(parent==null) {

root = current.right;

}else{

if(e.compareTo(parent.element) <0) {

parent.left = current.right;

}else{

parent.right = current.right;

}

}

}else{// 考虑第二种情况

TreeNode parentOfRightMost = current;

TreeNode rightMost = current.left;

// 找到左子树中最大的元素节点

while(rightMost.right !=null) {

parentOfRightMost = rightMost;

rightMost = rightMost.right;

}

// 替换

current.element = rightMost.element;

// parentOfRightMost和rightMost左孩子相连

if(parentOfRightMost.right == rightMost) {

parentOfRightMost.right = rightMost.left;

}else{

parentOfRightMost.left = rightMost.left;

}

}

returntrue;

}

平衡二叉树

平衡二叉树又称AVL树,它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1。

平衡二叉树

AVL树是最先发明的自平衡二叉查找树算法。在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

红黑树

红黑树是平衡二叉树的一种,它保证在最坏情况下基本动态集合操作的事件复杂度为O(log n)。红黑树和平衡二叉树区别如下:

(1) 红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单。

(2) 平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知。

四、图

简介

图是一种较线性表和树更为复杂的数据结构,在线性表中,数据元素之间仅有线性关系,在树形结构中,数据元素之间有着明显的层次关系,而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。图的应用相当广泛,特别是近年来的迅速发展,已经渗入到诸如语言学、逻辑学、物理、化学、电讯工程、计算机科学以及数学的其他分支中。

相关阅读

因为图这部分的内容还是比较多的,这里就不详细介绍了,有需要的可以自己搜索相关资料。

五、总结

到这里,关于常见的数据结构的整理就结束了,断断续续大概花了两天时间写完,在总结的过程中,通过查阅相关资料,结合书本内容,收获还是很大的,在下一篇博客中将会介绍常用数据结构与算法整理总结(下)之算法篇,欢迎大家关注。

 推荐↓↓↓ 

👉16个技术公众号】都在这里!

涵盖:程序员大咖、源码共读、程序员共读、数据结构与算法、黑客技术和网络安全、大数据科技、编程前端、Java、Python、Web编程开发、Android、iOS开发、Linux、数据库研发、幽默程序员等。

大红红蝴蝶公主

真的很喜欢这个公众号,虽然不经常留言,但是非常感谢你能整理出这么精准的知识

作者:感谢关注, 我是程序君, 期待大家加我个人微信 gaa353

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容