寻找第K大数方法总结(转)

设计一组N个数,确定其中第k个最大值,这是一个选择问题,当然,解决这个问题的方法很多,本人在网上搜索了一番,查找到以下的方式,决定很好,推荐给大家。

所谓“第(前)k大数问题”指的是在长度为n(n>=k)的乱序数组中S找出从大到小顺序的第(前)k个数的问题。

解法1:  我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*logn + k)。

解法2:  利用选择排序或交互排序,K次选择后即可得到第k大的数。总的时间复杂度为O(n*k)

解法3:  利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:

1.  Sa中元素的个数小于k,则Sb中的第k-|Sa|个元素即为第k大数;

2.  Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)

解法4:  二分[Smin,Smax]查找结果X,统计X在数组中出现,且整个数组中比X大的数目为k-1的数即为第k大数。时间复杂度平均情况为O(n*logn)

解法5:用O(4*n)的方法对原数组建最大堆,然后pop出k次即可。时间复杂度为O(4*n  +  k*logn)

解法6:维护一个k大小的最小堆,对于数组中的每一个元素判断与堆顶的大小,若堆顶较大,则不管,否则,弹出堆顶,将当前值插入到堆中。时间复杂度O(n  *  logk)

解法7:利用hash保存数组中元素Si出现的次数,利用计数排序的思想,线性从大到小扫描过程中,前面有k-1个数则为第k大数,平均情况下时间复杂度O(n)

附注:

1.  STL中可以用nth_element求得类似的第n大的数(由谓词决定),使用的是解法3中的思想,还可以用partial_sort对区间进行部分排序,得到类似前k大的数(由谓词决定),它采用的是解法5的思想。

2. 求中位数实际上是第k大数的特例。

《编程之美》2.5节课后习题:

1. 如果需要找出N个数中最大的K个不同的浮点数呢?比如,含有10个浮点数的数组(1.5,1.5,2.5,3.5,3.5,5,0,- 1.5,3.5)中最大的3个不同的浮点数是(5,3.5,2.5)。

解答:上面的解法均适用,需要注意的是浮点数比较时和整数不同,另外求hashkey的方法也会略有不同。

2. 如果是找第k到第m(0

解答:如果把问题看做m-k+1个第k大问题,则前面解法均适用。但是对于类似前k大这样的问题,最好使用解法5或者解法7,总体复杂度较低。

3. 在搜索引擎中,网络上的每个网页都有“权威性”权重,如page  rank。如果我们需要寻找权重最大的K个网页,而网页的权重会不断地更新,那么算法要如何变动以达到快速更新(incremental  update)并及时返回权重最大的K个网页?

提示:堆排序?当每一个网页权重更新的时候,更新堆。还有更好的方法吗?

解答:要达到快速的更新,我们可以解法5,使用映射二分堆,可以使更新的操作达到O(logn)

4. 在实际应用中,还有一个“精确度”的问题。我们可能并不需要返回严格意义上的最大的K个元素,在边界位置允许出现一些误差。当用户输入一个query的时候,对于每一个文档d来说,它跟这个query之间都有一个相关性衡量权重f  (query,  d)。搜索引擎需要返回给用户的就是相关性权重最大的K个网页。如果每页10个网页,用户不会关心第1000页开外搜索结果的“精确度”,稍有误差是可以接受的。比如我们可以返回相关性第10  001大的网页,而不是第9999大的。在这种情况下,算法该如何改进才能更快更有效率呢?网页的数目可能大到一台机器无法容纳得下,这时怎么办呢?

提示:归并排序?如果每台机器都返回最相关的K个文档,那么所有机器上最相关K个文档的并集肯定包含全集中最相关的K个文档。由于边界情况并不需要非常精确,如果每台机器返回最好的K’个文档,那么K’应该如何取值,以达到我们返回最相关的90%*K个文档是完全精确的,或者最终返回的最相关的K个文档精确度超过90%(最相关的K个文档中90%以上在全集中相关性的确排在前K),或者最终返回的最相关的K个文档最差的相关性排序没有超出110%*K。

解答:正如提示中所说,可以让每台机器返回最相关的K'个文档,然后利用归并排序的思想,得到所有文档中最相关的K个。  最好的情况是这K个文档在所有机器中平均分布,这时每台机器只要K' = K / n (n为所有机器总数);最坏情况,所有最相关的K个文档只出现在其中的某一台机器上,这时K'需近似等于K了。我觉得比较好的做法可以在每台机器上维护一个堆,然后对堆顶元素实行归并排序。

5. 如第4点所说,对于每个文档d,相对于不同的关键字q1, q2, …, qm,分别有相关性权重f(d, q1),f(d, q2), …, f(d,  qm)。如果用户输入关键字qi之后,我们已经获得了最相关的K个文档,而已知关键字qj跟关键字qi相似,文档跟这两个关键字的权重大小比较靠近,那么关键字qi的最相关的K个文档,对寻找qj最相关的K个文档有没有帮助呢?

解答:肯定是有帮助的。在搜索关键字qj最相关的K个文档时,可以在qj的“近义词”相关文档中搜索部分,然后在全局的所有文档中在搜索部分。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容