Elastic search中使用nested类型的内嵌对象

在大数据的应用环境中,往往使用反范式设计来提高读写性能。
假设我们有个类似简书的系统,系统里有文章,用户也可以对文章进行赞赏。在关系型数据库中,如果按照数据库范式设计,需要两张表:一张文章表和一张赞赏历史记录表,赞赏历史记录表包括了赞赏者姓名和赞赏金额。
在Elastic search中,由于都是json格式存储,则可以在一个index存储系统中的文章及其赞赏记录,这种情况下需要在elastic search中使用nested类型的内嵌对象。因为如果使用数组或者object对象的话,赞赏者姓名和赞赏金额是相互独立的进行存储,不能被正确的关联。

建立index

PUT articles
{
  "mappings": {
    "doc": {
      "properties": {
        "payment": {
          "type": "nested",
          "properties": {
            "amount": {
              "type": "integer"
            },
            "name": {
              "type": "keyword"
            }
          }
        }
      }
    }
  }
}

这样articles就有了payment这个nested类型的字段,payment里面的对象有amount和name,表示金额和姓名。

产生数据

产生如下数据,表示jack给文章1赞赏了29元,ross给文章1赞赏30元,ross给文章2赞赏31元。

POST articles/doc/1
{
  "payment": [
    {
      "name": "jack",
      "amount": 29
    },
    {
      "name": "ross",
      "amount": 30
    }
  ]
}

POST articles/doc/2
{
  "payment": [
    {
      "name": "ross",
      "amount": 31
    }
  ]
}

根据内嵌对象进行查询

现在想查询ross赞赏过的文章,需要使用nested query

GET articles/_search
{
  "query": {
    "nested": {
      "path": "payment",
      "query": {
        "term": {
          "payment.name": {
            "value": "ross"
          }
        }
      }
    }
  }
}

path表示了nested字段的名称,需要注意的是,查询语句中要指定查询字段的全名,所以赞赏者姓名要用"payment.name"
如果在多个index上进行nested查询,没有nested字段的index会报错,这时可以将ignore_unmapped设置为true

nested对象聚合

如果想查看赞赏的平均金额,需要用nested aggregation

GET articles/_search
{
  "size": 0, 
  "aggs": {
    "nested": {
      "nested": {
        "path": "payment"
      },
      "aggs": {
        "amount_avg": {
          "avg": {
            "field": "payment.amount"
          }
        }
      }
    }
  }
}

同样注意要用path指定字段名称。返回的数据中,比普通的聚合查询多了一层嵌套
返回结果为

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "nested": {
      "doc_count": 3,
      "amount_avg": {
        "value": 30
      }
    }
  }
}

nested对象聚合和过滤

如果想看ross赞赏过的总金额,一开始写出query如下

GET articles/_search
{
  "size": 0, 
  "query": {
    "nested": {
      "path": "payment",
      "query": {
        "term": {
          "payment.name": {
            "value": "ross"
          }
        }
      }
    }
  },
  "aggs": {
    "nested": {
      "nested": {
        "path": "payment"
      },
      "aggs": {
        "sum": {
          "sum": {
            "field": "payment.amount"
          }
        }
      }
    }
  }
}

此时结果并不是正确的,因为上面的query过滤的是ross赞赏过的文章,下面的聚合操作sum的是文章里所有的赞赏,包括了jack的赞赏。
所以需要在sum聚合操作之前,需要用Filter Aggregation筛选ross的赞赏。

GET articles/_search
{
  "size": 0,
  "query": {
    "nested": {
      "path": "payment",
      "query": {
        "term": {
          "payment.name": {
            "value": "ross"
          }
        }
      }
    }
  },
  "aggs": {
    "payment": {
      "nested": {
        "path": "payment"
      },
      "aggs": {
        "payer": {
          "filter": {
            "term": {
              "payment.name": {
                "value": "ross"
              }
            }
          },
          "aggs": {
            "sum": {
              "sum": {
                "field": "payment.amount"
              }
            }
          }
        }
      }
    }
  }
}

最外层的query筛选出ross赞赏过的文章。
第一层的aggs表示进行内嵌聚合。
第二层的aggs用Filter Aggregation筛选出表示ross赞赏行为的nested对象。
第三层的aggs进行聚合。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容