一.Flink概述

1.1 技术演变

流处理语义

At most once(最多一次):每条数据记录最多被处理一次,潜台词也表明数据会有丢失(没被处理掉)的可能

At least once(最少一次):每条数据记录至少被处理一次。这个比上一点强的地方在于这里至少保证数据不会丢,至少被处理过,唯一不足之处在于数据可能会被重复处理。

Exactly once(恰好一次):每条数据记录正好被处理一次。没有数据丢失,也没有重复的数据处理。这一点是3个语义里要求最高的。

Flink和Storm框架对比

Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架。其中 Storm在美团点评实时计算业务中已有较为成熟的运用,有管理平台、常用 API 和相应的文档,大量实时作业基于 Storm 构建。Flink在近期倍受关注,具有高吞吐、低延迟、高可靠和精确计算等特性,对事件窗口有很好的支持,目前在美团点评实时计算业务中也已有一定应用

      storm                    flink

于是,Flink出现了,这一技术框架可以避免上述弊端,并且拥有所需的诸多功能,还能按照连续事件高效地处理数据,Flink的部分特性如下图所示:

图 Flink的部分特性

1.2 差异性分析

1.2.1 Flink

1、数据量&吞吐量&延迟性

Flink 的流处理引擎只需要很少配置就能实现高吞吐率和低延迟。

2、支持 Event Time 和乱序事件

Flink 支持了流处理和 Event Time 语义的窗口机制。

Event time 使得计算乱序到达的事件或可能延迟到达的事件更加简单。

3、状态计算的 exactly-once 语义

流程序可以在计算过程中维护自定义状态。

Flink 的 checkpointing 机制保证了即时在故障发生下也能保障状态的 exactly once 语义。

4、高度灵活的流式窗口

Flink 支持在时间窗口,统计窗口,session 窗口,以及数据驱动的窗口

窗口可以通过灵活的触发条件来定制,以支持复杂的流计算模式。

5、带反压的连续流模型

数据流应用执行的是不间断的(常驻)operators。

Flink streaming 在运行时有着天然的流控:慢的数据 sink 节点会反压(backpressure)快的数据源(sources)。

6、容错性

Flink 的容错机制是基于 Chandy-Lamport distributed snapshots 来实现的。

这种机制是非常轻量级的,允许系统拥有高吞吐率的同时还能提供强一致性的保障。

7、Batch 和 Streaming 一个系统流处理和批处理共用一个引擎

Flink 为流处理和批处理应用公用一个通用的引擎。批处理应用可以以一种特殊的流处理应用高效地运行。

8、内存管理

Flink 在 JVM 中实现了自己的内存管理。

应用可以超出主内存的大小限制,并且承受更少的垃圾收集的开销。

9、迭代和增量迭代

Flink 具有迭代计算的专门支持(比如在机器学习和图计算中)。

增量迭代可以利用依赖计算来更快地收敛。

10、程序调优

批处理程序会自动地优化一些场景,比如避免一些昂贵的操作(如shuffles 和 sorts),还有缓存一些中间数据。

1.3 初识Flink

Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Apache软件基金会的顶级项目。

在德语中,Flink一词表示快速和灵巧,项目采用一只松鼠的彩色图案作为logo,这不仅是因为松鼠具有快速和灵巧的特点,还因为柏林的松鼠有一种迷人的红棕色,而Flink的松鼠logo拥有可爱的尾巴,尾巴的颜色与Apache软件基金会的logo颜色相呼应,也就是说,这是一只Apache风格的松鼠。

Flink主页在其顶部展示了该项目的理念:“Apache Flink是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架”。

Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算。

1.4 批处理与流处理

批处理的特点是有界、持久、大量,批处理非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。流处理的特点是无界、实时,流处理方式无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。

在Spark生态体系中,对于批处理和流处理采用了不同的技术框架,批处理由SparkSQL实现,流处理由Spark Streaming实现,这也是大部分框架采用的策略,使用独立的处理器实现批处理和流处理,而Flink可以同时实现批处理和流处理。

    Flink是如何同时实现批处理与流处理的呢?答案是,Flink将批处理(即处理有限的静态数据)视作一种特殊的流处理

    Flink的核心计算架构是下图中的Flink Runtime执行引擎,它是一个分布式系统,能够接受数据流程序并在一台或多台机器上以容错方式执行。

    Flink Runtime执行引擎可以作为YARN(Yet Another Resource Negotiator)的应用程序在集群上运行,也可以在Mesos集群上运行,还可以在单机上运行(这对于调试Flink应用程序来说非常有用)。

图 Flink计算架构

上图为Flink技术栈的核心组成部分,值得一提的是,Flink分别提供了面向流式处理的接口(DataStream API)和面向批处理的接口(DataSet API。因此,Flink既可以完成流处理,也可以完成批处理。Flink支持的拓展库涉及机器学习(FlinkML)、复杂事件处理(CEP)、以及图计算(Gelly),还有分别针对流处理和批处理的Table API。

能被Flink Runtime执行引擎接受的程序很强大,但是这样的程序有着冗长的代码,编写起来也很费力,基于这个原因,Flink提供了封装在Runtime执行引擎之上的API,以帮助用户方便地生成流式计算程序。Flink 提供了用于流处理的DataStream API和用于批处理的DataSet API。值得注意的是,尽管Flink Runtime执行引擎是基于流处理的,但是DataSet API先于DataStream API被开发出来,这是因为工业界对无限流处理的需求在Flink诞生之初并不大。

DataStream API可以流畅地分析无限数据流,并且可以用Java或者Scala来实现。开发人员需要基于一个叫DataStream的数据结构来开发,这个数据结构用于表示永不停止的分布式数据流。

Flink的分布式特点体现在它能够在成百上千台机器上运行,它将大型的计算任务分成许多小的部分,每个机器执行一部分。Flink能够自动地确保发生机器故障或者其他错误时计算能够持续进行,或者在修复bug或进行版本升级后有计划地再执行一次。这种能力使得开发人员不需要担心运行失败。Flink本质上使用容错性数据流,这使得开发人员可以分析持续生成且永远不结束的数据(即流处理)。

总结:

无穷数据集:无穷的持续集合的数据集合

无穷数据集:有限不会改变的数据集合

常见的无穷数据集合?

用户与客户端的实时交互数据

应用实时产生的日志

金融市场的实时交易记录

数据运算模型?

流式:只要数据一直产生,计算就持续的进行

批处理:在预先定义的时间内运行计算、当完成时释放计算机资源

总结:Flink既可以处理有界数据集、也可以处理无界数据集。既可以处理流式数据、也可以批量的处理数据

1.5 Flink应用场景

Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等。Flink 不仅可以运行在包括YARN、 Mesos、Kubernetes在内的多种资源管理框架上,还支持在裸机集群上独立部署。在启用高可用选项的情况下,它不存在单点失效问题。事实证明,Flink 已经可以扩展到数千核心,其状态可以达到 TB 级别,且仍能保持高吞吐、低延迟的特性。世界各地有很多要求严苛的流处理应用都运行在 Flink 之上。

接下来我们将介绍Flink 常见的几类应用并给出相关实例链接。

事件驱动型应用

反欺诈

异常检测

基于规则的报警

业务流程监控

Web应用

数据分析应用

电信网路质量监控

移动应用中的产品更新及实验评估分析

大规模图分析

数据管道应用

电子商务中的实时查询索引构建

电子商务中的持续ETL

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容