Spark机器学习实战(一)Spark的环境搭建与简单销售统计应用

Spark机器学习实战(一)Spark的环境搭建与简单销售统计应用

之前写了一个从零开始学习Spark的系列,一共八篇文章,了解了基本的Scala语言,RDD操作。接下来准备再开一个专题,记录一下Spark用于机器学习的实战Project,目的是将Spark和机器学习用于各个数据集的实战中。

第一部分还是用一个很简单的例子来配通Spark的环境,大致过程与从零开始学习Spark(一)环境配置,实现WordCount一致,只是为了完整性再记录一下。

Spark可以运行在各种集群上,但在这里我们都运行在本地,所以数据集的规模不会太庞大。

这个系列的文章会完成一个完整的系统:利用机器学习为一个电影网站提供数据支持。文章中列出了关键代码,完整代码见我的github repository,这篇文章的代码在chapter01

任务目标

这一部分的例子非常简单,数据集是一个销售报表,格式为:用户名,商品名称,价格,我们需要统计总售货数,用户数量,总收入,以及商品销量排行。数据如下:

John,iPhone Cover,9.99
John,Headphones,5.49
Jack,iPhone Cover,9.99
Jill,Samsung Galaxy Cover,8.95
Bob,iPad Cover,5.49

第1步:配置sbt在IntelliJ下编程环境

打开terminal

查看java版本,由于MacOS自带java,因此无需安装

$ java -version

安装sbt,这是编译scala的工具

$ brew install sbt

查看sbt与scala信息

$ sbt about

下载安装IntelliJ

安装Scala Plugin:打开IntelliJ,在选择项目界面,选择Configure → Plugins → Install JetBrains Plugins,搜索Scala并安装

选择默认SDK:Configure → Project defaults → Project structure,SDK选择Java1.8

至此scala在IntelliJ下的开发环境配置完毕

第2步:配置Spark工具包

下载Spark:下载地址,注意如果已经安装了Hadoop的话要下载对应的版本,下面的命令可以查看Hadoop版本

$ hadoop version

下载完毕后解压并将其放在一个目录下,假设放在/usr/shar/spark-2.1.0-bin-hadoop2.7,那么我们往环境变量中添加Spark方便以后使用

$ vim .bash_profile

加入一行,保存后重启terminal即可

export SPARK_HOME=/usr/shar/spark-2.1.0-bin-hadoop2.7

至此,Spark环境配置完毕,是不是非常方便

第3步:构建我们的应用

首先,IntelliJ下创建sbt项目:打开IntelliJ → Create New Project → Scala → sbt → ProjectName = chapter01 → Create

修改build.sbt,在最后加入一行Spark的包。注意scalaVersion一定要改成2.11,因为Spark2.1.0是基于Scala2.11的,默认的2.12会报错!

name := "chapter01"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"

让我们先来看一下sbt项目的目录结构

├── build.sbt
├── project
│   ├── build.properties
│   ├── plugins.sbt
│   ├── project
│   └── target
├── src
│   ├── main
│   │   ├── java
│   │   ├── resources
│   │   ├── scala
│   │   └── scala-2.12
│   └── test
│       ├── java
│       ├── resources
│       ├── scala
│       └── scala-2.12
└── target
    ├── resolution-cache
    ├── scala-2.12
    └── streams

我们首先将我们的数据集放在一个新建的data目录中,/data/UserPurchaseHistory.csv

John,iPhone Cover,9.99
John,Headphones,5.49
Jack,iPhone Cover,9.99
Jill,Samsung Galaxy Cover,8.95
Bob,iPad Cover,5.49

我们需要写的代码主要放在/src/main/scala里面

下一步,我们开始写我们的代码,具体细节不用深究,本章节只是为了配通环境

添加文件/src/main/scala/ScalaApp.scala

/**
  * Created by c on 2017/5/28.
  */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object ScalaApp {

  def main(args: Array[String]) {
    val sc = new SparkContext("local[2]", "First Spark App")
    val data = sc.textFile("data/UserPurchaseHistory.csv")
      .map(line => line.split(','))
      .map(purchaseRecord => (purchaseRecord(0), purchaseRecord(1), purchaseRecord(2)))

    val numPurchases: Long = data.count()
    val uniqueUsers: Long = data.map { case (user, product, price) => user }.distinct.count()
    val totalRevenue: Double = data.map { case (user, product, price) => price.toDouble }.sum()
    val productsByPopularity = data.map { case (user, product, price) => (product, 1) }
      .reduceByKey((x, y) => x + y).sortByKey(ascending=false).collect()
    val mostPopular = productsByPopularity(0)

    println("Total purchases: " + numPurchases)
    println("Unique users: " + uniqueUsers)
    println("Total revenue: " + totalRevenue)
    println("Most popular product: %s with %d purchases".
      format(mostPopular._1, mostPopular._2))
  }
}

此时,我们在IntelliJ中的ScalaApp.scala代码浏览界面的object旁可以看到一个按钮,按一下就可以直接run了

run project

下方Console中出现如下结果证明运行成功

Total purchases: 5
Unique users: 4
Total revenue: 39.91
Most popular product: iPhone Cover with 2 purchases
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容