Hadoop介绍
- 狭义上Hadoop指的是Apache的一项开源的软件
用Java语言实现开源软件框架
允许使用简单的编程模型跨计算机集群对大型数据进行分布式处理- Hadoop核心组件
HDFS(分布式文件系统):解决海量数据存储
YARN(作业调度和集群资源管理的框架):解决资源任务调度
MAPREDUCE(分布式运算编程框架):解决海量数据计算- 广义上Hadoop指的是围绕Hadoop打造的大数据生态圈
Hadoop特性优点
- 扩容能力(Scalable):Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
- 成本低(Economical):Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
- 高效率(Efficient):通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
- 可靠性(Rellable):能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。
Hadoop历史版本
- 1.x版本系列:hadoop版本当中的第二代开源版本,主要修复0.x版本的一些bug等,该版本已被淘汰
- 2.x版本系列:架构产生重大变化,引入了yarn平台等许多新特性,是现在使用的主流版本。
- 3.x版本系列:对HDFS、MapReduce、YARN都有较大升级,还新增了Ozone key-value存储。
Hadoop 3.0新特性
Hadoop 3.0在功能和性能方面,对hadoop内核进行了多项重大改进,主要包括:
- 通用性
1.精简Hadoop内核,包括剔除过期的API和实现,将默认组件实现替换成最高效的实现。
2.Classpath isolation:以防止不同版本jar包冲突
3.Shell脚本重构: Hadoop 3.0对Hadoop的管理脚本进行了重构,修复了大量bug,增加了新特性。- HDFS
Hadoop3.x中Hdfs在可靠性和支持能力上作出很大改观:
1.HDFS支持数据的擦除编码,这使得HDFS在不降低可靠性的前提下,节省一半存储空间。
2.多NameNode支持,即支持一个集群中,一个active、多个standby namenode部署方式。注:多ResourceManager特性在hadoop 2.0中已经支持。
-- HDFS纠删码
在Hadoop3.X中,HDFS实现了Erasure Coding这个新功能。Erasure coding纠删码技术简称EC,是一种数据保护技术.最早用于通信行业中数据传输中的数据恢复,是一种编码容错技术。
它通过在原始数据中加入新的校验数据,使得各个部分的数据产生关联性。在一定范围的数据出错情况下,通过纠删码技术都可以进行恢复。
hadoop-3.0之前,HDFS存储方式为每一份数据存储3份,这也使得存储利用率仅为1/3,hadoop-3.0引入纠删码技术(EC技术),实现1份数据+0.5份冗余校验数据存储方式。
与副本相比纠删码是一种更节省空间的数据持久化存储方法。标准编码(比如Reed-Solomon(10,4))会有1.4 倍的空间开销;然而HDFS副本则会有3倍的空间开销。
-- 支持多个NameNodes
最初的HDFS NameNode high-availability实现仅仅提供了一个active NameNode和一个Standby NameNode;并且通过将编辑日志复制到三个JournalNodes上,这种架构能够容忍系统中的任何一个节点的失败。
然而,一些部署需要更高的容错度。我们可以通过这个新特性来实现,其允许用户运行多个Standby NameNode。比如通过配置三个NameNode和五个JournalNodes,这个系统可以容忍2个节点的故障,而不是仅仅一个节点。- MapReduce
Hadoop3.X中的MapReduce较之前的版本作出以下更改:
1.Tasknative优化:为MapReduce增加了C/C++的map output collector实现(包括Spill,Sort和IFile等),通过作业级别参数调整就可切换到该实现上。对于shuffle密集型应用,其性能可提高约30%。
2.MapReduce内存参数自动推断。在Hadoop 2.0中,为MapReduce作业设置内存参数非常繁琐,一旦设置不合理,则会使得内存资源浪费严重,在Hadoop3.0中避免了这种情况。
Hadoop3.x中的MapReduce添加了Map输出collector的本地实现,对于shuffle密集型的作业来说,这将会有30%以上的性能提升。- 其他
--默认端口更改
在hadoop3.x之前,多个Hadoop服务的默认端口都属于Linux的临时端口范围(32768-61000)。这就意味着用户的服务在启动的时候可能因为和其他应用程序产生端口冲突而无法启动。
现在这些可能会产生冲突的端口已经不再属于临时端口的范围,这些端口的改变会影响NameNode, Secondary NameNode, DataNode以及KMS。与此同时,官方文档也进行了相应的改变,具体可以参见 HDFS-9427以及HADOOP-12811。
Namenode ports: 50470 --> 9871, 50070--> 9870, 8020 --> 9820
Secondary NN ports: 50091 --> 9869,50090 --> 9868
Datanode ports: 50020 --> 9867, 50010--> 9866, 50475 --> 9865, 50075 --> 9864
Kms server ports: 16000 --> 9600 (原先的16000与HMaster端口冲突)
--YARN 资源类型
--YARN 资源模型(YARN resource model)已被推广为支持用户自定义的可数资源类型(support user-defined countable resource types),不仅仅支持 CPU 和内存。
--比如集群管理员可以定义诸如 GPUs、软件许可证(software licenses)或本地附加存储器(locally-attached storage)之类的资源。YARN 任务可以根据这些资源的可用性进行调度。