6.824 Lab 1: MapReduce

计划过很多次,终于开始了6.824的征程;

希望一鼓作气!

一: MapReduce逻辑

6.824 Lab 1:MapReduce 代码逻辑图
6.824 Lab 1:MapReduce 代码逻辑图

二: 实验任务

  1. 完成用户端map()+reduce()函数。调用MapReduce接口,用于单词统计,倒排索引生成;
  2. 完成MapReduce端任务处理函数doMap()+doReduce(),一个Map/Reduce的任务具体的执行流程;
  3. 完成MapReduce端调度函数schedule(),master如何调度worker进行分布式作业;
  4. 完成MapReduce端fault tolerance,处理worker failures;

三: 实验问题

Part1:Map/Reduce input and output
json编解码需要一致
//merge阶段,读取每个reduce任务输出的文件,一个个解析;
dec := json.NewDecoder(file)
for {
    var kv KeyValue
    err = dec.Decode(&kv)
    if err != nil {
    break
    }
    kvs[kv.Key] = kv.Value
}
//原始版本:reduce阶段,写入文件,将切片整体写入,导致merge无法解析,最终check不正确;
var values []KeyValue   
enc := json.NewEncoder(file)
err:=enc.Encode(&values)

//修改版本:reduce阶段,写入文件,一个个写入;
enc := json.NewEncoder(file)
for key,values := range keys {
    enc.Encode(KeyValue{key, reduceF(key,values)})
}
Part3: Distributing MapReduce tasks
//workers资源池
workers := make(chan string, ntasks)
go func() {
  for workerAdress := range registerChan {
    workers <- workerAdress
  }
  //原有错误代码
  // workerAdress := <-registerChan
  // workers <- workerAdress
}()
    
//错误原因:map/reduce阶段只接受一个worker;导致另一个worker工作任务为0;
//当map阶段和reduce阶段接受的worker不同时,偶尔返回正确答案,但也是错误的,因为每个阶段仍然是只有一个worker在处理;
注意并发参数
func main() {
    var wg sync.WaitGroup
    wg.Add(10)
    for i := 0; i < 10; i++ {
        go func() {
            fmt.Println(i)
            wg.Done()
        }
    }
    wg.Wait()
}
10
6
6
10
10
10
10
10
10
4
Part4: Handling worker failures
(1)
func work(workers chan string, doTaskArgs DoTaskArgs) {
    defer wg.Done()
    Here:
    workerAdress := <-workers //获取工作线程
    if call(workerAdress, "Worker.DoTask", doTaskArgs, nil) {
        workers <- workerAdress //工作正常完成
    }else{
        workers <- workerAdress //工作非正常完成
        goto Here
    }
}

(2)
func work(workers chan string, doTaskArgs DoTaskArgs) {
    defer wg.Done()
    Here:
    workerAdress := <-workers //获取工作线程
    if call(workerAdress, "Worker.DoTask", doTaskArgs, nil) {//工作正常完成
        workers <- workerAdress 
    }else{//工作非正常完成
        // workers <- workerAdress 
        goto Here
    }
}

崩溃的worker不需要再放入workers资源池中,worker的nRPC为0时,会断开链接;
for {
        wk.Lock()
        if wk.nRPC == 0 {
            wk.Unlock()
            break
        }
        wk.Unlock()
        conn, err := wk.l.Accept()
        if err == nil {
            wk.Lock()
            wk.nRPC--
            wk.Unlock()
            go rpcs.ServeConn(conn)
        } else {
            break
        }
    }
wk.l.Close()
debug("RunWorker %s exit\n", me)
Part5: Inverted index generation
题目的文件输出是按照文件名排序,并没有按照文件的次数排序;
func reduceF(key string, values []string) string {
    // TODO: you should complete this to do the inverted index challenge
    //每篇文章的数目
    documentNumMap := make(map[string]int)
    for _, document := range values {
        documentNumMap[document]++
    }
    // //相同次数的文章集合
    // numDocumentMap := make(map[int][]string)
    // for document, number := range documentNumMap {
    //  numDocumentMap[number] = append(numDocumentMap[number], document)
    // }
    // //根据key排序
    // documentNums := make([]int, 0)
    // for number, _ := range numDocumentMap {
    //  documentNums = append(documentNums, number)
    // }
    // sort.Ints(documentNums)

    // //输出
    // documents:=make([]string,0)
    // for index := 0; index < len(documentNums); index++ {
    //  documentNum := documentNums[index]
    //  documents = append(documents,numDocumentMap[documentNum]...)
    // }
    // return strconv.Itoa(len(documentNumMap)) + " " + strings.Join(documents, ",")

    documents:=make([]string,0)
    for document,_:=range documentNumMap{
        documents = append(documents,document)
    }
    sort.Strings(documents)
    return strconv.Itoa(len(documentNumMap)) + " " + strings.Join(documents, ",")   
}
Test

实验每个part单独做测试时均正常运行,但是在最后整体测试时,part3、part4偶尔会出现报错:

error: listen unix /var/tmp/824-502/mr47307-worker13: socket: too many open files in system

//1:读取每个临时文件中的数据并整合到一起
keyValues := make([]KeyValue, 0)
for index := 0; index < nMap; index++ {
  fileName := reduceName(jobName, index, reduceTaskNumber)
  file, errFile := os.Open(fileName)
  if errFile != nil {
    log.Fatal(errFile)
  }
  defer file.Close()
  var tempKeyValues []KeyValue //一个文件中的数据,临时,否则会被覆盖
  errDecode := json.NewDecoder(file).Decode(&tempKeyValues)
  keyValues = append(keyValues, tempKeyValues...)
  if errDecode != nil {
    log.Fatal(errDecode)
  }
}
    
    
keyValues := make([]KeyValue, 0)
for index := 0; index < nMap; index++ {
  fileName := reduceName(jobName, index, reduceTaskNumber)
  file, err := os.Open(fileName)
  if err != nil {
    log.Fatal("doReduce: ",err)
  }
  dec:=json.NewDecoder(file)
  for{
    var kv KeyValue
    err=dec.Decode(&kv)
    if err!=nil {
      break;
    }
    keyValues = append(keyValues,kv)
  }
  file.Close()
}

defer 导致函数结束时才释放文件,nMap个文件全部open状态,这可能是报错的原因; 

修改完毕,全部测试pass;

Lab1 2017-09-10
Lab1 2017-09-10

四: 总结

  1. MapReduce
    • 概念理解
    • 实现理解
  2. 熟悉go语言
    • 实验需求-》学习动力
    • 调试BUG
    • 学习提供代码

[2017.9 梦工厂]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容