OSSpinLock
自旋锁(过期了),等待锁的线程会处于忙等(busy-wait)状态,一直占用着CPU资源
目前应不再安全,可能出现优先级反转问题
优先级低的线程1先进入,锁住。CPU把大量时间给优先级高的线程2,优先级高的线程2等线程1解锁,优先级低的线程获得不到CPU的时间,无法解锁。出现了假死锁。
#import <libkern/OSAtomic.h>
OSSpinLock lock = OS_SPINLOCK_INIT; // 需要全局 初始化一次
// 锁
OSSpinLockLock(&lock);
// 解锁
OSSpinLockUnLock(&lock);
// 尝试加锁
if (OSSpinLockTry(&lock)) {
OSSpinLockUnLock(&lock);
}
os_unfair_lock
iOS10以后
优化了OSSpinLock,等待os_unfair_lock锁的线程
#import <os/lock.h>
typedef struct os_unfair_lock_s {
uint32_t _os_unfair_lock_opaque;
} os_unfair_lock, *os_unfair_lock_t;
@property(assign, nonatomic) os_Unfair_lock lock;
os_unfair_lock_lock(&lock);
os_unfair_lock_trylock(&lock);
os_unfair_lock_unlock(&lock);
pthread_mutex
pthread开头都是跨平台的
mutex:互斥
互斥锁,等待锁的线程会处于休眠状态
#import <pthread.h>
// pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
// 初始化属性
pthread_mutexattr_t attr;
pthread_mutextattr_init(&attr);
// PTHREAD_MUTEX_DEFAULT 默认锁
// 检测错误锁
// PTHREAD_MUTEX_RECURSIVE 递归锁
允许同一个线程对一把锁进行重复加锁
允许同一个线程先多次加锁,然后再解锁,加锁多少次,解锁多少次。
a线程锁了,b线程来了要等待
pthread_mutextattr_settype(&attr, PTHREAD_MUTEX_DEFAULT);
// 初始化锁
pthread_mutex_init(&mutex, &attr);
// 销毁属性
pthread_mutexattr_destroy(&attr);
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);
// 销毁锁 (dealloc)
phread_mutex_destroy(&mutex);
- (void)test {
pthread_mutex_lock(&mutex);
NSLog(@“—0”);
[self test1];
pthread_mutex_unlock(&mutex);
}
- (void)test1 {
pthread_mutex_lock(&mutex);
NSLog(@“—1”);
pthread_mutex_unlock(&mutex);
}
死锁,解决办法:两把锁,test1里再用一把锁mutex2即可
- (void)test {
pthread_mutex_lock(&mutex);
// 递归 使用PTHREAD_MUTEX_RECURSIVE
static int count = 0;
if (count < 5) {
count++;
[self test];
}
pthread_mutex_unlock(&mutex);
}
允许先多次加锁,然后再解锁,加锁多少次,解锁多少次。
// 条件。
@property(assign, nonatomic)pthread_cond_t cond;
// 初始化
pthread_cond_init(&cond, NULL);
// 两条线程 先执行remove方法
[[[NSTread alloc] initWithTarget:self selector:@selector(remove) objcet: nil] start];
[[[NSTread alloc] initWithTarget:self selector:@selector(add) objcet: nil] start];
- (void)remove {
pthread_mutex_lock(&mutex);
if (self.data.count == 0) {
// 等待继续执行的条件cond 把mutex锁放开
// 收到可以继续执行的条件 mutex加锁
pthread_cond_wait(&cond, &mutex);
}
[self.data removeLastObject];
NSLog(@“删除了元素”);
pthread_mutex_unlock(&mutex);
}
- (void)add {
pthread_mutex_lock(&mutex);
sleep(1);
[self.data addObject:@“te”];
NSLog(@“添加了元素”);
// 通知等待的cond 可以继续执行了
pthread_cond_signal(&cond)
pthread_mutex_unlock(&mutex);
}
NSLock
对pthread_mutex普通锁的封装
遵守NSLocking两个协议
lock和unlock两个方法
-(BOOL)tryLock; // 尝试加锁
-(BOOL)lockBeforeDate: (NSDate *)limit; // 相比tryLock有个等待的时间 会阻塞
在这个时间之前,能等到锁,就给这个锁加锁 加锁成功 继续往下走
在时间内,没等到锁,加锁失败,代码继续往前走
@property(strong, nonatomic) NSLock *lock;
self.lock = [[NSLock allock] init];
[self.lock lock];
[self.lock unlock];
NSRecursiveLock <NSLocking>
对pthread_mutex递归锁锁的封装
NSRecursiveLock方法同NSLock
NSCondition<NSLocking>
对pthread_cond_t的封装 有lock和unlock方法
-(void)wait;
-(BOOL)waitUntilDate:(NSDate *)limit;
-(void)signal;
-(void)broadcast;
NSConditionLock<NSLocking>
条件锁
内部存储的条件之是1(初始化是多少)时候才能加锁
对pthread_cond_t和pthread_mutex_t的封装
@property(strong, nonatomic) NSConditionLock *conditionLock;
self.conditionLock = [[NSConditonLock allok] initWithCondition:1];
- (void)one {
[self.conditionLock lockWhenCondition: 1];// 条件之为1才能加锁
NSLog(@“11”);
[self.conditionLock lockWhenCondition: 2];// 设置内部条件值为2 并解锁
}
- (void)two {
[self.conditionLock lockWhenCondition: 3];// 条件之为2才能加锁
NSLog(@“22”);
[self.conditionLock unlock];
}
- (void)three {
[self.conditionLock lockWhenCondition: 3];// 条件之为2才能加锁
NSLog(@“22”);
[self.conditionLock unlock];
}
效果:一定先执行one 再执行two 最后执行three
dispatch_semaphore
信号量 信号量的初始值,可以用来控制线程并发访问的最大数量
最大并发量
线程同步 信号量设置为1 DISPATCH_TIME_FOREVER 即可 保证只有一条线程执行
@property (strong, nonatomic) dispatch_semaphore_t semaphore;
self.semaphore = dispatch_semaphore_create(5); // 最大并发5
- (void)test {
for (i = 0; i< 20; i++) {
[[[NSThread alloc] initWithTarget: self selector@selector(run) object:nil] start];
}
}
- (void)run {
// 信号量的值 > 0,就让信号量的值减1,然后继续执行代码
// 信号量的值 <= 0 就会休眠等待 具体等多久 看dispatch_semaphore_wait第二个参数
dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
sleep(2);
NSLog(@“%@“, [NSTread crrentThread]);
// 刚执行到这里 信号量为0
// 信号量+1
dispatch_semaphore_signal(self.semaphore);
}
// 每个方法都是独立一把锁
-(void)test {
static dispatch_semaphore_t semaphore;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^ {
semaphore = dispatch_semaphore_create(1);
})
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
// 要加锁的代码
dispatch_semahore_signal(semaphore);
}
// 宏
#define SemaphoreBegin \
static dispatch_semaphore_t semaphore; \
static dispatch_once_t onceToken; \
dispatch_once(&onceToken, ^ { \
semaphore = dispatch_semaphore_create(1); \
})\
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
#define SemaphoreEnd \
dispatch_semahore_signal(semaphore);
-(void)test {
SemaphoreBegin;
// 要加锁的代码
SemaphoreEnd;
}
dispatch_queue(DISPATCH_QUEUE_SERIAL)
串行队列
@property(strong, nonatomic)dispatch_queue_t queue;
self.queue = dispatch_queue_create(“q”, DISPATCH_QUEUE_SERIAL);
- (void)saleTicket {
dispatch_sync({self.queue, ^{
NSLog(@“sale“);
});
}
@synchronized
对prhead_mutex递归锁的封装
不推荐使用
{
@synchronized(self) {
[self run];
}
}
读写安全
1、dispatch_semaphore_t 信号量
读和写都给锁住了 读没必要锁住
2、
import <pthread.h>
@property (assign, nonatomic)pthread_rwlock lock;
{
pthread_rwlock_init(&lock, NULL)
[[[NSTread alloc] initWithTarget:self selector:@selector(read) objcet: nil] start];
[[[NSTread alloc] initWithTarget:self selector:@selector(write) objcet: nil] start];
}
-(void)read {
pthread_rwlock_rdlock(&lock);
NSLog(@“du”);
pthread_rwlock_unlock(&lock);
}
-(void)write {
pthread_rwlock_wrlock(&lock);
NSLog(@“xie”);
pthread_rwlock_unlock(&lock);
}
-(void)dealloc {
pthread_rwlock_dispose(&lock);
}
-(void)read {
dispatch_async(q, ^{
NSLog(@“du”);
})
}
-(void)write {
dispatch_barrier_async(q, ^ {
NSLog(@“xie”);
})
}