OpenCV-Python教程:38.FAST角点检测算法

理论

我们看到了一些特征检测算法,他们很多都不错,但是从实时应用的角度看,他们都不够快,一个最好的例子是SLAM(同步定位与地图创建)移动机器人没有足够的计算能力。

作为解决方案,FAST(加速切片测试特征)算法被提出,Edward Rosten和Tom Drummond 2006年在他们的论文“Machine learning for high-speed corner detection”提出,并在2010年最后修订,算法的基本大意如下:

使用FAST进行特征检测

1.选择一个图像里的像素p用来识别是不是一个兴趣点,它的强度是Ip

2.选择一个合适的阈值t

3.在要测试的像素周围找16个像素的圆


4.现在如果存在一个在圆内(16像素的)的n个连续像素集合,他们都比Ip + t要亮,或者都比Ip - t 要暗(用白虚线显示),那p就是角, n取12。

5.用一个高速测试来排除大量非角。这个测试只检查1,9,5和13位置的像素(首先1和9会测试是否他们太亮或者太暗,如果是,再检查5和13)。如果p是角,那么至少3个都比Ip+t要亮或者比Ip-t要暗,如果不是这样,那么p不可能是角。这个检测器展现了高性能,但是有几个缺陷:

·当n< 12时不能拒绝很多备选点

·像素的选择不是可选的,因为它的效率依赖问题和角的分布。

·高速测试的结果被丢弃了

·会检测出多个爱挨在一起的特征

机器学习角点检测

1.选择一组图像进行训练(最好从目标应用范围内)

2.运行FAST算法来对每个图像进行特征点查找

3.对每个特征点,存下周围的16个像素作为向量。所有图像做完以后得到特征向量P。

4.这16个像素里的每个像素(设为x)可以有下面的三个状态:

5.根据这些状态,特征向量P被分成3个子集,Pd, Ps, Pb.

6.定义个新的布尔变量Kp,如果p是角就是真反之为假。

7.使用ID3算法(决策树分类)来查询每个子集,对于每个true类用变量Kp,它选择x来得出一个备选像素是否是角的信息。

8.对所有子集迭代直到为0

9.创建的决策树用来对其他图形做fast检测

非极大值抑制

在临近位置检测多个兴趣点是另一个问题,可以使用非极大值抑制来解决。

1.计算一个分数函数,V是所有检测到的特征点,V是p和16个围着的像素值得绝对差。

2.计算两个相邻关键点的V值

3.丢掉V值低的那个

总结:

它比其他存在的角点算法要快几倍

但是它对高噪点情况来说不健壮,依赖阈值

OpenCV里的FAST特征检测

它和其他OpenCV里的特征检测类似,如果你愿意,你可以指定阈值,是否使用非极大值抑制,要用的邻居等。

对于邻居,定义了三个标志位, cv2.FAST_FEATURE_DETECTOR_TYPE_5_8, cv2.FAST_FEATURE_DETECTOR_TYPE_7_12和cv2.FAST_FEATURE_DETECTOR_TYPE_9_16.

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('simple.jpg',0)

# Initiate FAST object with default values
fast = cv2.FastFeatureDetector()

# find and draw the keypoints
kp = fast.detect(img,None)
img2 = cv2.drawKeypoints(img, kp, color=(255,0,0))

# Print all default params
print "Threshold: ", fast.getInt('threshold')
print "nonmaxSuppression: ", fast.getBool('nonmaxSuppression')
print "neighborhood: ", fast.getInt('type')
print "Total Keypoints with nonmaxSuppression: ", len(kp)

cv2.imwrite('fast_true.png',img2)

# Disable nonmaxSuppression
fast.setBool('nonmaxSuppression',0)
kp = fast.detect(img,None)

print "Total Keypoints without nonmaxSuppression: ", len(kp)

img3 = cv2.drawKeypoints(img, kp, color=(255,0,0))

cv2.imwrite('fast_false.png',img3)

看结果,第一个图像显示了使用了非极大值抑制的FAST,第二个是没有使用非极大值抑制的。

END

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容