最近最少使用算法 - LruCache

简介

我们在做图片三级缓存时,内存缓存为了防止内存溢出,导致APP崩溃,使用LruCache<K, V>来管理内存数据,内部由最近最少使用算法实现,将内存控制在一定的大小内,超出最大值时会自动回收。

原理

初始化时指定最大内存大小,google原生OS的默认值是16M,但是各个厂家的OS会对这个值进行修改,有的128 有的256等等。可使用val maxMemory = Runtime.getRuntime().maxMemory()来动态获取手机的内存大小,一般控制在总内存的1/8。

初始化
public LruCache(int maxSize) {
    if (maxSize <= 0) {
        throw new IllegalArgumentException("maxSize <= 0");
    }
    this.maxSize = maxSize;
    this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}
new LruCache<String,Bitmap>((int) maxMemory/8)
添加数据

当有新数据添加时,往LinkedHashMap里面添加数据存储到链表尾端,如果之前存在则移除之前的数据,添加完成之后计算是否超过最大内存。

public final V put(K key, V value) {
    if (key == null || value == null) {
        throw new NullPointerException("key == null || value == null");
    }
    V previous;
    synchronized (this) {
        putCount++;
        size += safeSizeOf(key, value);
        previous = map.put(key, value);
        if (previous != null) {
            size -= safeSizeOf(key, previous);
        }
    }
    if (previous != null) {
        entryRemoved(false, key, previous, value);
    }
    trimToSize(maxSize);
    return previous;
}

判断内存集合是否超过最大限制;如果超过,将链表头部的对象也就是近期最少用到的数据移除,直到内存大小满足最大初始值。

private void trimToSize(int maxSize) {
    while (true) {
        K key;
        V value;
        synchronized (this) {
            if (size < 0 || (map.isEmpty() && size != 0)) {
                throw new IllegalStateException(getClass().getName()
                        + ".sizeOf() is reporting inconsistent results!");
            }
            if (size <= maxSize) {
                break;
            }
            Map.Entry<K, V> toEvict = null;
            for (Map.Entry<K, V> entry : map.entrySet()) {
                toEvict = entry;
            }
            if (toEvict == null) {
                break;
            }
            key = toEvict.getKey();
            value = toEvict.getValue();
            map.remove(key);
            size -= safeSizeOf(key, value);
            evictionCount++;
        }
        entryRemoved(true, key, value, null);
}
获取数据

获取数据时,有数据时,直接返回数据,没有数据就调用create返回自定义的或者null

public final V get(K key) {
    if (key == null) {
        throw new NullPointerException("key == null");
    }
    V mapValue;
    synchronized (this) {
        mapValue = map.get(key);
        if (mapValue != null) {
            hitCount++;
            return mapValue;
        }
        missCount++;
    }

    V createdValue = create(key);
    if (createdValue == null) {
        return null;
    }
    synchronized (this) {
        createCount++;
        mapValue = map.put(key, createdValue);
        if (mapValue != null) {
            map.put(key, mapValue);
        } else {
            size += safeSizeOf(key, createdValue);
        }
    }
    if (mapValue != null) {
        entryRemoved(false, key, createdValue, mapValue);
        return mapValue;
    } else {
        trimToSize(maxSize);
        return createdValue;
    }
}

初始化LinkedHashMap accessOrder传值为true,调用afterNodeAccess;

public V get(Object key) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) == null)
        return null;
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;
}

当accessOrder的值为true,且e不是尾节点,将e移到链表的尾端;

void afterNodeAccess(Node<K,V> e) { // move node to last
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

LruCache 局部同步锁
在 get, put, trimToSize, remove 四个方法里的 entryRemoved 方法都不在同步块里,因为 entryRemoved 回调的参数都属于方法域参数,不会线程不安全。

总结

通过以上源码的分析,可以知道新增数据和获取缓存时,数据都会移动到链表尾端,而当前内存大于设置最大内存的大小时,会移除链表头端的数据,与hitCount++的数量毫无关系。

面试题:最近最少使用算法是使用次数多的还是最近的数据先被移除?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容