数学知识是一个整体,它的各部分之间相互联系,有时也可以相互转化。转化可以将数的一种形式转化为另一种形式,一种运算转化为另一种运算,一个关系转化为另一个关系,一个量转化为另一个量,一种图形转化为另一种或几种图形,使一种对象在一定条件下转变为另一种研究对象。
为了有利于学生学习和研究,我们注意将新知识转化成学生已经学过的知识,将较为复杂的问题转化成比较简单的问题,例如把小数乘法的计算转化为整数乘法的计算,把分数除法的计算转化为分数乘法的计算,把不规则图形的面积计算转化成规则图形的面积计算。实际上,除了长方形的面积计算公式之外,其他平面图形面积计算公式的推导,我们都是通过变换原来的平面图形,帮助学生把对“新”图形的认知转化成对“旧”图形的改造与提升,在“新”“旧”知识的联系中寻找到解决“新”知的方法。研究平行四边形面积的计算时,我们把一个平行四边形“剪”“拼”转化成长方形来计算面积;研究三角形、梯形面积的计算时,我们把两个相同的三角形、两个相同的梯形分别拼成一个平行四边形来计算面积;研究圆面积的计算时,我们把一个圆平均分成16、32、64份,剪开后拼成一个近似的平行四边形,并由此想象无限细分下去,拼成的图形就接近于长方形,可以通过拼成的长方形来计算面积。这样,就将原来的图形通过剪、拼等途径加以“变形”,化难为易。