最新姿态估计研究进展

最新姿态估计研究进展

自上而下:就是先检测包含人的框,即human proposal,然后对框子中的人进行姿态估计。一般RCNN(区域CNN就是这个思路)

自下而上:先检测keypoint,然后根据热力图、点与点之间连接的概率,根据图论知识,基于PAF(部分亲和字段)将关键点连接起来,将关键点分组到人。

1、CMU:openpose 研究多人的姿态估计

运行环境:caffe

自下而上, 关键点被分组到人的实例

时间:2.8-3.4fps

开源,Github: https://github.com/CMU-Perceptual-Computing-Lab/openpose

2、谷歌:

(1)deepgaze 研究头部姿态和注意力方向的,开源

主要为头部姿态估计 先框出人脸区域,再进行姿态估计。

运行环境:tensorflow+python

运行速度较快,基本满足实时性,准确度略差。

开源。Github: https://github.com/mpatacchiola/deepgaze

(2)野外多人姿态估计:Towards Accurate Multi-person Pose Estimation in the Wild 自上而下(up-bottom)的方法,把姿态估计器放在边界框的输出后。

未开源

3、UCLA:

(1)《Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations》2014

(2)《Joint Multi-Person Pose Estimation and Semantic Part Segmentation> ( ICCV 2017, UCLA)》自上而下

时间需要8s一张图。

4、Facebook: 2018

mask RCNN:https://github.com/facebookresearch/Detectron

该开源项目可以进行人-物交互识别,如有人拿着手机在耳朵边,则可判定为人在打电话,人手上捧着书,则人在读书。网络通过目标检测和语义分割联合进行,从而进行行为识别。

据说keypoint检测和openpose差不多,效果略差于openpose.可见时间也提不上去。

Caffe2+python

5、deepercut: 2016

基于tensorflow

其具体思路即(类似openpose):提出人体部件的候选区域,每个候选区域作为一个节点,所有的节点组成一个密集连接图,节点之间的关联性作为图节点之间的权重,将其作为一个优化问题,将属于同一个人的部件(节点)归为一类,每个人作为一个单独类。

(1)采用了Resnet(残差网络)来提高body part的检测,更加的有效,精度更高;

(2)使用了image-conditioned pairwise terms可以将得到足够丰富的候选区域节点压缩到一定数量的节点,而这也是整个论文的核心部分,也是stronger & faster的主要原因。通过候选区域节点之间的距离来判断是否为不同的重要关节点。

https://github.com/eldar/deepcut-cnn

时间:230s/frame(太慢了)

6、《RMPE: Regional Multi-Person Pose Estimation》ICCV 2017 腾讯优图和上海交大联合研究的。它对于多人姿态估计的方法采用传统的自顶向下的方法,即先检测人,再识别人体姿态。检测使用的是SSD-512,识别人体姿态使用的是state-of-the-art的Stacked Hourglass方法。

论文地址:https://arxiv.org/abs/1612.00137v3

项目主页:RMPE: Regional Multi-person Pose Estimation

http://blog.csdn.net/qq_36165459/article/details/78330800

人体姿态数据集:

LSP

地址:http://sam.johnson.io/research/lsp.html

样本数:2K

关节点个数:14

全身,单人

FLIC

地址:https://bensapp.github.io/flic-dataset.html

样本数:2W

关节点个数:9

全身,单人

MPII

地址:http://human-pose.mpi-inf.mpg.de/

样本数:25K

关节点个数:16

全身,单人/多人,40K people,410 human activities

MSCOCO

地址:http://cocodataset.org/#download

样本数:>= 30W

关节点个数:18

全身,多人,keypoints on 10W people

AI Challenge

地址:https://challenger.ai/competition/keypoint/subject

样本数:21W Training, 3W Validation, 3W Testing

关节点个数:14

全身,多人,38W people

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容